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• Explore the motivations for & challenges of concurrent software 

Concurrent software can simultaneously run multiple 
computations that potentially interact with each other 

Introduction 
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• Explore the motivations for & challenges of concurrent software 

• Understand the mechanisms that Android  
provides to manage multiple threads that  
run concurrently within a process 

Introduction 

Process A Process B Process C 
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• Explore the motivations for & challenges of concurrent software 

• Understand the mechanisms that Android  
provides to manage multiple threads that  
run concurrently within a process 

• Some Android mechanisms are based on  
standard Java threading & locking  
mechanisms 

 

Introduction 
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• Explore the motivations for & challenges of concurrent software 

• Understand the mechanisms that Android  
provides to manage multiple threads that  
run concurrently within a process 

• Some Android mechanisms are based on  
standard Java threading & locking  
mechanisms 

• Other mechanisms are based on  
Android concurrency idioms 
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Learning Objectives in this Part of the Module 

• Understand the motivations for & challenges of concurrent software 
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• Leverage hardware/software 
advances 

• e.g., multi-core processors  
& multi-threaded operating  
systems, virtual machines,  
& middleware 

 

 

Motivations for Concurrent Software 

www.androidauthority.com/tag/quad-core-phones has more info 

http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
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Motivations for Concurrent Software 
• Leverage hardware/software 

advances 

• Simplify program structure 

• e.g., by allow blocking operations 

 

 

• Classic single 
architectures can’t 
perform blocking 
operations 

• This complicates app 
implementations by 
decoupling the flow of 
control in time & space 
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Motivations for Concurrent Software 
• Leverage hardware/software 

advances 

• Simplify program structure 

• e.g., by allow blocking operations 

 

 

Modern multi-threaded 
architectures support 
blocking I/O in certain 

contexts  
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Motivations for Concurrent Software 

private Bitmap bitmap; 

final ImageView iview = ... 

final Button button = ... 

button.setOnClickListener(new OnClickListener() { 

     public void onClick(View v) {  

       new Thread(new Runnable() { 

           public void run() { 

             bitmap = downloadImage(URI); 

             iview.post(new Runnable() { 

               public void run() { iview.setImageBitmap(bitmap);} 

             }); 

           } 

       }).start(); 

• Leverage hardware/software 
advances 

• Simplify program structure 

• e.g., by allow blocking operations 

 

 

Multi-threaded 
Android example 

developer.android.com/guide/components/processes-and-threads.html#WorkerThreads 

http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
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Motivations for Concurrent Software 

private Bitmap bitmap; 

final ImageView iview = ... 

final Button button = ... 

button.setOnClickListener(new OnClickListener() { 

     public void onClick(View v) {  

       new Thread(new Runnable() { 

           public void run() { 

             bitmap = downloadImage(URI); 

             iview.post(new Runnable() { 

               public void run() { iview.setImageBitmap(bitmap);} 

             }); 

           } 

       }).start(); Start a new thread 

Download an image 
 

Display bitmap in the UI thread 

Handles button clicks 

• Leverage hardware/software 
advances 

• Simplify program structure 

• e.g., by allow blocking operations 

 

 

developer.android.com/guide/components/processes-and-threads.html#WorkerThreads 

http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
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• Leverage hardware/software 
advances 

• Simplify program structure 

• Increase performance 

• Parallelize computations  
& communications 

 

 

Motivations for Concurrent Software 
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• Leverage hardware/software 
advances 

• Simplify program structure 

• Increase performance 

• Improve response-time 

• e.g., don’t starve the  
UI thread 

 

 

Motivations for Concurrent Software 

//upload.wikimedia.org/wikipedia/commons/2/25/Hourglass_2.svg
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• Accidental Complexities 

 

 

 

Challenges for Concurrent Software 

Stem from limitations with development tools & techniques  
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• Accidental Complexities 

• Low-level APIs 

• Tedious, error-prone, & non-portable  

 

 

 

Challenges for Concurrent Software 

See www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf for more info 

http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
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• Accidental Complexities 

• Low-level APIs 

 

 

 

typedef struct  

{ char message_[20]; int thread_id_; } PARAMS; 

 

void *print_hello_world (void *ptr) { 

  PARAMS *params = (PARAMS *) ptr; 

  printf ("%s from thread %d\n",  

          params->message_, params->thread_id_); 

} 

 

int main (void) { 

  pthread_t thread; PARAMS params; 

  params.thread_id_ = 1; strcpy (params.message_, "Hello World"); 

 

 

  pthread_create (&thread, 0, &print_hello_world,  

                  (void *) &params); 

  /* ... */ 

  pthread_join(thread, 0); 

  return 0; 

} 

Challenges for Concurrent Software 

Pointer-to-
function 

Cast to void * 

Cast  
from  
void * 

“Quasi-typed” thread handle 

Not portable to non-POSIX platforms 
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• Accidental Complexities 

• Low-level APIs 

 

 

 

Challenges for Concurrent Software 

Other C threading APIs have similar accidental complexities 

typedef struct  

{ char message_[20]; int thread_id_; } PARAMS; 

 

void *print_hello_world (void *ptr) { 

  PARAMS *params = (PARAMS *) ptr; 

  printf ("%s from thread %d\n",  

          params->message_, params->thread_id_); 

} 

 

int main (void) { 

  pthread_t thread; PARAMS params; 

  params.thread_id_ = 1; strcpy (params.message_, "Hello World"); 

 

 

  pthread_create (&thread, 0, &print_hello_world,  

                  (void *) &params); 

  /* ... */ 

  pthread_join(thread, 0); 

  return 0; 

} 



Android Concurrency & Synchronization D. C. Schmidt 

19 

• Accidental Complexities 

• Low-level APIs 

• Limited debugging tools 

 

 

 

Challenges for Concurrent Software 
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• Accidental Complexities 

• Low-level APIs 

• Limited debugging tools 

 

 

 

Challenges for Concurrent Software 

See www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf & www.fluid.cs.cmu.edu    

http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.fluid.cs.cmu.edu/
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Challenges for Concurrent Software 

Stem from 
fundamental domain 

challenges 

• Accidental Complexities 

• Inherent Complexities 
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• Accidental Complexities 

• Inherent Complexities 

• Synchronization  

Challenges for Concurrent Software 

en.wikipedia.org/wiki/Synchronization_(computer_science) has more info 

Synchronization is the application of 
mechanisms to ensure that two concurrently-

executing threads  do not execute specific 
portions of a program at the same time 

http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
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• Accidental Complexities 

• Inherent Complexities 

• Synchronization  

• Scheduling 

Challenges for Concurrent Software 

en.wikipedia.org/wiki/Scheduling_(computing) has more info 

Scheduling is the method by which 
threads, processes, or data flows are 

given access to system resources 

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
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• Accidental Complexities 

• Low-level APIs 

• Limited debugging tools 

• Inherent Complexities 

• Synchronization  

• Scheduling 

• Deadlocks 

 

 

 

Challenges for Concurrent Software 

L2 

L1 

T2 T1 

<<owns>> 

<<owns>> <<needs>> 

<<needs>> 

• Accidental Complexities 

• Inherent Complexities 

• Synchronization  

• Scheduling 

• Deadlock 

See en.wikipedia.org/wiki/Deadlock for more info 

A deadlock is a situation in which two or more 
competing actions are each waiting for the 
other to finish, and thus neither ever does 

http://en.wikipedia.org/wiki/Deadlock
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Summary 
• Concurrent software helps  

• Leverage advances in hardware technology  

• Meet the quality & performance needs of apps & services 
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Summary 
• Concurrent software helps  

• Leverage advances in hardware technology  

• Meet the quality & performance needs of apps & services 

• Successful concurrent software solutions must address key accidental  
& inherent complexities arising from  

• Limitations with development  
tools/techniques  
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Summary 
• Concurrent software helps  

• Leverage advances in hardware technology  

• Meet the quality & performance needs of apps & services 

• Successful concurrent software solutions must address key accidental  
& inherent complexities arising from  

• Limitations with development  
tools/techniques  

• Fundamental domain  
challenges 
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• Understand how to program Java mechanisms available in Android to 
implement concurrent apps that process requests simultaneously via 
multithreading  

 

Learning Objectives in this Part of the Module 

Process A Process B Process C 
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Overview of Java Threads in Android 

• Android implements many 
standard Java concurrency  
& synchronization classes 

See docs.oracle.com/javase/tutorial/essential/concurrency 

http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/tutorial/essential/concurrency/
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Overview of Java Threads in Android 

• Android implements many 
standard Java concurrency  
& synchronization classes 

• Conceptual view 

• Concurrent computations 
running in a (Linux) 
process that can 
communicate with each 
other via shared memory 
or message passing 

Process A Process B Process C 
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Overview of Java Threads in Android 

• Android implements many 
standard Java concurrency  
& synchronization classes 

• Conceptual view 

• Implementation view 

• Each Java thread has a 
program counter & a stack 
(unique) 

• The heap & static areas 
are shared across threads 
(common) 

 

See developer.android.com/guide/components/processes-and-threads.html 

Process A Process B Process C 

http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
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public class MyThread  

            extends Thread { 

   public void run() { 

      //code to run goes here 

   } 

} 

 

  MyThread myt = new MyThread();  

  myt.start(); 

 

 

 

 

• All threads must be given some code  
to run by either 

• Extending the Thread class 

Using Java Threads in Android 

Thread 

MyThread 

Starting a thread using a 
named class (or inner class) 
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• All threads must be given some code  
to run by either 

• Extending the Thread class 

• Implementing the Runnable interface 

Using Java Threads in Android 

Runnable public interface Runnable {  

   public void run();  

} 

 

 

 

public class MyRunnable  

            implements Runnable { 

    public void run() { 

      //code to run goes here 

   } 

} 

 

MyRunnable myr = new MyRunnable();  

new Thread(myr).start(); 

 

 

 

 

MyRunnable 

Starting a thread using a 
named implementation of 

Runnable 
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• All threads must be given some code  
to run by either 

• Extending the Thread class 

• Implementing the Runnable interface 

Using Java Threads in Android 

Runnable public interface Runnable {  

   public void run();  

} 

 

 

 

new Thread(new Runnable() { 

  public void run(){ 

    //code to run goes here 

  } 

}).start(); 

 

 

MyRunnable 

Starting a thread using an 
anonymous class (or inner 

class) as the Runnable 
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• All threads must be given some code  
to run 

• Android calls the Thread/Runnable  
run() method after a new thread 
starts up 

 

: My 

Component 

onCreate() 

start() 

run() 

new() 

Using Java Threads in Android 

Run  
concurrently 

: MyThread 
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• All threads must be given some code  
to run 

• Android calls the Thread/Runnable  
run() method after a new thread 
starts up 

• You can run any code in  
a thread, but it must be  
inside of a run() method  
or called from a run()  
method 

 

: My 

Component 

onCreate() 

start() 

run() 

new() 

Using Java Threads in Android 

Run  
concurrently 

: MyThread 
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• All threads must be given some code 
to run 

• Android calls the Thread/Runnable  
run() method after a new thread 
starts up 

• The thread can be active  
as long as the run() method 
hasn’t returned 

• Naturally, the Android scheduler 
can suspend/resume threads 

: My 

Component 

onCreate() 

start() 

run() 

new() 

Using Java Threads in Android 

join() 

: MyThread 
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• All threads must be given some code 
to run 

• Android calls the Thread/Runnable  
run() method after a new thread 
starts up 

• The thread can be active  
as long as the run() method 
hasn’t returned 

• Naturally, the Android scheduler 
can suspend/resume threads 

• If you want thread to run “forever,” 
you need to have a while(true) 
statement in that run() method 

: My 

Component 

onCreate() 

start() 

run() 

new() 

Using Java Threads in Android 

join() 

: MyThread 
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: My 

Component 

onCreate() 

Using Java Threads in Android 

• All threads must be given some code 
to run 

• Android calls the Thread/Runnable  
run() method after a new thread 
starts up 

• The thread can be active  
as long as the run() method 
hasn’t returned 

• When run() returns the thread  
is no longer active 
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Summary 

• Some concurrency mechanisms provided 
by Android are based on standard Java 
threading classes 
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Learning Objectives in this Part of the Module 

• Understand how the Java concurrency mechanisms available in Android are 
implemented  
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 
1. MyThread.start() 
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 
1. MyThread.start() 

2. Thread.start() // Java method 

See libcore/luni/src/main/java/java/lang/Thread.java  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 
1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

See libcore/luni/src/main/java/java/lang/VMThread.java  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 
1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

See dalvik/vm/native/java_lang_VMThread.cpp  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 
1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

5. dvmCreateInterpThread(Object* threadObj,  

                      int reqStackSize) // Dalvik method 

See dalvik/vm/Thread.cpp  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 

Runtime 
thread  
stack 

1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

5. dvmCreateInterpThread(Object* threadObj,  

                      int reqStackSize) // Dalvik method 

6. pthread_create(&threadHandle, &threadAttr,  

               interpThreadStart, newThread) // Pthreads method 

See bionic/libc/bionic/pthread.c  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 

Runtime 
thread  
stack 

1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

5. dvmCreateInterpThread(Object* threadObj,  

                      int reqStackSize) // Dalvik method 

6. pthread_create(&threadHandle, &threadAttr,  

               interpThreadStart, newThread) // Pthreads method 

7. interpThreadStart(void* arg) // Adapter 

See dalvik/vm/Thread.cpp  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 

Runtime 
thread  
stack 

1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

5. dvmCreateInterpThread(Object* threadObj,  

                      int reqStackSize) // Dalvik method 

6. pthread_create(&threadHandle, &threadAttr,  

               interpThreadStart, newThread) // Pthreads method 

7. interpThreadStart(void* arg) // Adapter 

8. dvmCallMethod(self, run,  

                 self->threadObj,  

                 &unused) // Dalvik method 

  

See dalvik/vm/interp/Stack.cpp  

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
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Starting Java Threads 
• When start() is called on a Java Thread object a whole series of steps occur 

 

Runtime 
thread  
stack 

1. MyThread.start() 

2. Thread.start() // Java method 

3. VMThread.create() // Native method 

4. Dalvik_java_lang_VMThread_create(const u4* args,  

                                 JValue* pResult) // JNI method 

5. dvmCreateInterpThread(Object* threadObj,  

                      int reqStackSize) // Dalvik method 

6. pthread_create(&threadHandle, &threadAttr,  

               interpThreadStart, newThread) // Pthreads method 

7. interpThreadStart(void* arg) // Adapter 

8. dvmCallMethod(self, run,  

                 self->threadObj,  

                 &unused) // Dalvik method 

9. MyThread.run() // User-defined hook 
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• If you are going to create a long running operation inside of your run() 
method, you must ensure your code can stop voluntarily! 

 
Process 



Android Concurrency & Synchronization D. C. Schmidt 

62 

Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• This method sends an  
interrupt request to  
the designated thread 

Thread t1 =  

 new Thread(new Runnable() { 

  public void run(){ 

     for (int i = 0;  

          i < input.length;  

          i++) {  

       process(input[i]);  

       if (Thread.interrupted())   

         throw InterruptedException();  

   } 

  }  

 

t1.start(); 

... 

t1.interrupt(); 
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• This method sends an  
interrupt request to  
the designated thread 

• Check Thread.interrupted() 
periodically to see if the  
thread’s been stopped & 
throw InterruptedException 

 

Thread t1 =  

 new Thread(new Runnable() { 

  public void run(){ 

     for (int i = 0;  

          i < input.length;  

          i++) {  

       process(input[i]);  

       if (Thread.interrupted())   

         throw InterruptedException();  

   } 

  }  

 

t1.start(); 

... 

t1.interrupt(); 
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• This method sends an  
interrupt request to  
the designated thread 

• Check Thread.interrupted() 
periodically to see if the  
thread’s been stopped & 
throw InterruptedException 

• Certain blocking operations  
will be automatically be  
interrupted 

• e.g., wait(), join(), sleep() 
& blocking I/O calls 

 

Thread t1 =  

 new Thread(new Runnable() { 

  public void run(){ 

     for (int i = 0;  

          i < input.length;  

          i++) {  

       process(input[i]);  

       if (Thread.interrupted())   

         throw InterruptedException();  

   } 

  }  

 

t1.start(); 

... 

t1.interrupt(); 

See developer.android.com/reference/java/lang/Thread.html#interrupt() 

http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• Another way is to use a “stop”  
flag 

public class MyRunnable  

           implements Runnable { 

  private volatile boolean  

                 running_ = true; 

  public void stop() {  

  running_ = false;  

}  

  public void run() { 

    while(running_) {  

    // do stuff  

  } 

  } 

} 
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• Another way is to use a “stop”  
flag 

• Add a volatile boolean  
flag “running_” to your  
class that implements  
Runnable 

• Initially, set “running_”  
to true 

 

public class MyRunnable  

           implements Runnable { 

  private volatile boolean  

                 running_ = true; 

  public void stop() {  

  running_ = false;  

}  

  public void run() { 

    while(running_) {  

    // do stuff  

  } 

  } 

} 
 

 

 

en.wikipedia.org/wiki/Volatile_variable#In_Java has more on volatile 

http://en.wikipedia.org/wiki/Volatile_variable#In_Java
http://en.wikipedia.org/wiki/Volatile_variable#In_Java
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• Another way is to use a “stop”  
flag 

• Add a volatile boolean  
flag “running_” to your  
class that implements  
Runnable 

• Have a stop() method that  
sets “running_” to false 

public class MyRunnable  

           implements Runnable { 

  private volatile boolean  

                 running_ = true; 

  public void stop() {  

  running_ = false;  

}  

  public void run() { 

    while(running_) {  

    // do stuff  

  } 

  } 

} 
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Stopping Java Threads 
• Other than returning from run(), there’s no “stop” method for a Java Thread 

• One way to stop a thread is to use the interrupt() method 

• Another way is to use a “stop”  
flag 

• Add a volatile boolean  
flag “running_” to your  
class that implements  
Runnable 

• Have a stop() method that  
sets “running_” to false 

• Check “running_” periodically 
to see if the thread’s been 
stopped 

public class MyRunnable  

           implements Runnable { 

  private volatile boolean  

                 running_ = true; 

  public void stop() {  

  running_ = false;  

}  

  public void run() { 

    while(running_) {  

    // do stuff  

  } 

  } 

} 
 

 

 

This solution requires developers to periodically check if thread was stopped 
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Summary 

• Java Threads are implemented using various methods & functions defined by 
lower layers of the Android software stack  


