
Android Concurrency &

Synchronization: Introduction

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II

Systems Programming for Android

mailto:d.schmidt@vanderbilt.edu

Android Concurrency & Synchronization D. C. Schmidt

2

• Explore the motivations for & challenges of concurrent software

Concurrent software can simultaneously run multiple
computations that potentially interact with each other

Introduction

Android Concurrency & Synchronization D. C. Schmidt

3

• Explore the motivations for & challenges of concurrent software

• Understand the mechanisms that Android
provides to manage multiple threads that
run concurrently within a process

Introduction

Process A Process B Process C

Android Concurrency & Synchronization D. C. Schmidt

4

• Explore the motivations for & challenges of concurrent software

• Understand the mechanisms that Android
provides to manage multiple threads that
run concurrently within a process

• Some Android mechanisms are based on
standard Java threading & locking
mechanisms

Introduction

Android Concurrency & Synchronization D. C. Schmidt

5

• Explore the motivations for & challenges of concurrent software

• Understand the mechanisms that Android
provides to manage multiple threads that
run concurrently within a process

• Some Android mechanisms are based on
standard Java threading & locking
mechanisms

• Other mechanisms are based on
Android concurrency idioms

Introduction

L
o

o
p

e
r Message

Message

Message

Message

Message

Message

Queue

UI Thread
(main thread)

Message

Message

Background

Thread A

Handler

Message

Handler

Background

Thread B

Async

Task

Android Concurrency &

Synchronization: Part 1

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II

Systems Programming for Android

mailto:d.schmidt@vanderbilt.edu

Android Concurrency & Synchronization D. C. Schmidt

7

Learning Objectives in this Part of the Module

• Understand the motivations for & challenges of concurrent software

Android Concurrency & Synchronization D. C. Schmidt

8

• Leverage hardware/software
advances

• e.g., multi-core processors
& multi-threaded operating
systems, virtual machines,
& middleware

Motivations for Concurrent Software

www.androidauthority.com/tag/quad-core-phones has more info

http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones
http://www.androidauthority.com/tag/quad-core-phones

Android Concurrency & Synchronization D. C. Schmidt

9

Motivations for Concurrent Software
• Leverage hardware/software

advances

• Simplify program structure

• e.g., by allow blocking operations

• Classic single
architectures can’t
perform blocking
operations

• This complicates app
implementations by
decoupling the flow of
control in time & space

L
o

o
p

e
r Message

Message

Message

Message

Message

Message

Queue

UI Thread
(main thread)

Message

Android Concurrency & Synchronization D. C. Schmidt

10

Motivations for Concurrent Software
• Leverage hardware/software

advances

• Simplify program structure

• e.g., by allow blocking operations

Modern multi-threaded
architectures support
blocking I/O in certain

contexts
L

o
o

p
e

r Message

Message

Message

Message

Message

Message

Queue

UI Thread
(main thread)

Message

Message

Background

Thread A

Handler

Message

Handler

Background

Thread B

Async

Task

Android Concurrency & Synchronization D. C. Schmidt

11

Motivations for Concurrent Software

private Bitmap bitmap;

final ImageView iview = ...

final Button button = ...

button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 new Thread(new Runnable() {

 public void run() {

 bitmap = downloadImage(URI);

 iview.post(new Runnable() {

 public void run() { iview.setImageBitmap(bitmap);}

 });

 }

 }).start();

• Leverage hardware/software
advances

• Simplify program structure

• e.g., by allow blocking operations

Multi-threaded
Android example

developer.android.com/guide/components/processes-and-threads.html#WorkerThreads

http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads

Android Concurrency & Synchronization D. C. Schmidt

12

Motivations for Concurrent Software

private Bitmap bitmap;

final ImageView iview = ...

final Button button = ...

button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 new Thread(new Runnable() {

 public void run() {

 bitmap = downloadImage(URI);

 iview.post(new Runnable() {

 public void run() { iview.setImageBitmap(bitmap);}

 });

 }

 }).start(); Start a new thread

Download an image

Display bitmap in the UI thread

Handles button clicks

• Leverage hardware/software
advances

• Simplify program structure

• e.g., by allow blocking operations

developer.android.com/guide/components/processes-and-threads.html#WorkerThreads

http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads
http://developer.android.com/guide/components/processes-and-threads.html#WorkerThreads

Android Concurrency & Synchronization D. C. Schmidt

13

• Leverage hardware/software
advances

• Simplify program structure

• Increase performance

• Parallelize computations
& communications

Motivations for Concurrent Software

Android Concurrency & Synchronization D. C. Schmidt

14

• Leverage hardware/software
advances

• Simplify program structure

• Increase performance

• Improve response-time

• e.g., don’t starve the
UI thread

Motivations for Concurrent Software

//upload.wikimedia.org/wikipedia/commons/2/25/Hourglass_2.svg

Android Concurrency & Synchronization D. C. Schmidt

15

• Accidental Complexities

Challenges for Concurrent Software

Stem from limitations with development tools & techniques

Android Concurrency & Synchronization D. C. Schmidt

16

• Accidental Complexities

• Low-level APIs

• Tedious, error-prone, & non-portable

Challenges for Concurrent Software

See www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf for more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/BC-schmidt.pdf

Android Concurrency & Synchronization D. C. Schmidt

17

• Accidental Complexities

• Low-level APIs

typedef struct

{ char message_[20]; int thread_id_; } PARAMS;

void *print_hello_world (void *ptr) {

 PARAMS *params = (PARAMS *) ptr;

 printf ("%s from thread %d\n",

 params->message_, params->thread_id_);

}

int main (void) {

 pthread_t thread; PARAMS params;

 params.thread_id_ = 1; strcpy (params.message_, "Hello World");

 pthread_create (&thread, 0, &print_hello_world,

 (void *) ¶ms);

 /* ... */

 pthread_join(thread, 0);

 return 0;

}

Challenges for Concurrent Software

Pointer-to-
function

Cast to void *

Cast
from
void *

“Quasi-typed” thread handle

Not portable to non-POSIX platforms

Android Concurrency & Synchronization D. C. Schmidt

18

• Accidental Complexities

• Low-level APIs

Challenges for Concurrent Software

Other C threading APIs have similar accidental complexities

typedef struct

{ char message_[20]; int thread_id_; } PARAMS;

void *print_hello_world (void *ptr) {

 PARAMS *params = (PARAMS *) ptr;

 printf ("%s from thread %d\n",

 params->message_, params->thread_id_);

}

int main (void) {

 pthread_t thread; PARAMS params;

 params.thread_id_ = 1; strcpy (params.message_, "Hello World");

 pthread_create (&thread, 0, &print_hello_world,

 (void *) ¶ms);

 /* ... */

 pthread_join(thread, 0);

 return 0;

}

Android Concurrency & Synchronization D. C. Schmidt

19

• Accidental Complexities

• Low-level APIs

• Limited debugging tools

Challenges for Concurrent Software

Android Concurrency & Synchronization D. C. Schmidt

20

• Accidental Complexities

• Low-level APIs

• Limited debugging tools

Challenges for Concurrent Software

See www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf & www.fluid.cs.cmu.edu

http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS.pdf
http://www.fluid.cs.cmu.edu/

Android Concurrency & Synchronization D. C. Schmidt

21

Challenges for Concurrent Software

Stem from
fundamental domain

challenges

• Accidental Complexities

• Inherent Complexities

Android Concurrency & Synchronization D. C. Schmidt

22

• Accidental Complexities

• Inherent Complexities

• Synchronization

Challenges for Concurrent Software

en.wikipedia.org/wiki/Synchronization_(computer_science) has more info

Synchronization is the application of
mechanisms to ensure that two concurrently-

executing threads do not execute specific
portions of a program at the same time

http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)

Android Concurrency & Synchronization D. C. Schmidt

23

• Accidental Complexities

• Inherent Complexities

• Synchronization

• Scheduling

Challenges for Concurrent Software

en.wikipedia.org/wiki/Scheduling_(computing) has more info

Scheduling is the method by which
threads, processes, or data flows are

given access to system resources

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)

Android Concurrency & Synchronization D. C. Schmidt

24

• Accidental Complexities

• Low-level APIs

• Limited debugging tools

• Inherent Complexities

• Synchronization

• Scheduling

• Deadlocks

Challenges for Concurrent Software

L2

L1

T2 T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

• Accidental Complexities

• Inherent Complexities

• Synchronization

• Scheduling

• Deadlock

See en.wikipedia.org/wiki/Deadlock for more info

A deadlock is a situation in which two or more
competing actions are each waiting for the
other to finish, and thus neither ever does

http://en.wikipedia.org/wiki/Deadlock

Android Concurrency & Synchronization D. C. Schmidt

25

Summary
• Concurrent software helps

• Leverage advances in hardware technology

• Meet the quality & performance needs of apps & services

Android Concurrency & Synchronization D. C. Schmidt

26

Summary
• Concurrent software helps

• Leverage advances in hardware technology

• Meet the quality & performance needs of apps & services

• Successful concurrent software solutions must address key accidental
& inherent complexities arising from

• Limitations with development
tools/techniques

Android Concurrency & Synchronization D. C. Schmidt

27

Summary
• Concurrent software helps

• Leverage advances in hardware technology

• Meet the quality & performance needs of apps & services

• Successful concurrent software solutions must address key accidental
& inherent complexities arising from

• Limitations with development
tools/techniques

• Fundamental domain
challenges

Android Concurrency &

Synchronization: Part 2

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II

Systems Programming for Android

mailto:d.schmidt@vanderbilt.edu

Android Concurrency & Synchronization D. C. Schmidt

29

• Understand how to program Java mechanisms available in Android to
implement concurrent apps that process requests simultaneously via
multithreading

Learning Objectives in this Part of the Module

Process A Process B Process C

Android Concurrency & Synchronization D. C. Schmidt

30

Overview of Java Threads in Android

• Android implements many
standard Java concurrency
& synchronization classes

See docs.oracle.com/javase/tutorial/essential/concurrency

http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/tutorial/essential/concurrency/
http://docs.oracle.com/javase/tutorial/essential/concurrency/

Android Concurrency & Synchronization D. C. Schmidt

31

Overview of Java Threads in Android

• Android implements many
standard Java concurrency
& synchronization classes

• Conceptual view

• Concurrent computations
running in a (Linux)
process that can
communicate with each
other via shared memory
or message passing

Process A Process B Process C

Android Concurrency & Synchronization D. C. Schmidt

32

Overview of Java Threads in Android

• Android implements many
standard Java concurrency
& synchronization classes

• Conceptual view

• Implementation view

• Each Java thread has a
program counter & a stack
(unique)

• The heap & static areas
are shared across threads
(common)

See developer.android.com/guide/components/processes-and-threads.html

Process A Process B Process C

http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html

Android Concurrency & Synchronization D. C. Schmidt

33

public class MyThread

 extends Thread {

 public void run() {

 //code to run goes here

 }

}

 MyThread myt = new MyThread();

 myt.start();

• All threads must be given some code
to run by either

• Extending the Thread class

Using Java Threads in Android

Thread

MyThread

Starting a thread using a
named class (or inner class)

Android Concurrency & Synchronization D. C. Schmidt

34

• All threads must be given some code
to run by either

• Extending the Thread class

• Implementing the Runnable interface

Using Java Threads in Android

Runnable public interface Runnable {

 public void run();

}

public class MyRunnable

 implements Runnable {

 public void run() {

 //code to run goes here

 }

}

MyRunnable myr = new MyRunnable();

new Thread(myr).start();

MyRunnable

Starting a thread using a
named implementation of

Runnable

Android Concurrency & Synchronization D. C. Schmidt

35

• All threads must be given some code
to run by either

• Extending the Thread class

• Implementing the Runnable interface

Using Java Threads in Android

Runnable public interface Runnable {

 public void run();

}

new Thread(new Runnable() {

 public void run(){

 //code to run goes here

 }

}).start();

MyRunnable

Starting a thread using an
anonymous class (or inner

class) as the Runnable

Android Concurrency & Synchronization D. C. Schmidt

36

• All threads must be given some code
to run

• Android calls the Thread/Runnable
run() method after a new thread
starts up

: My

Component

onCreate()

start()

run()

new()

Using Java Threads in Android

Run
concurrently

: MyThread

Android Concurrency & Synchronization D. C. Schmidt

37

• All threads must be given some code
to run

• Android calls the Thread/Runnable
run() method after a new thread
starts up

• You can run any code in
a thread, but it must be
inside of a run() method
or called from a run()
method

: My

Component

onCreate()

start()

run()

new()

Using Java Threads in Android

Run
concurrently

: MyThread

Android Concurrency & Synchronization D. C. Schmidt

38

• All threads must be given some code
to run

• Android calls the Thread/Runnable
run() method after a new thread
starts up

• The thread can be active
as long as the run() method
hasn’t returned

• Naturally, the Android scheduler
can suspend/resume threads

: My

Component

onCreate()

start()

run()

new()

Using Java Threads in Android

join()

: MyThread

Android Concurrency & Synchronization D. C. Schmidt

39

• All threads must be given some code
to run

• Android calls the Thread/Runnable
run() method after a new thread
starts up

• The thread can be active
as long as the run() method
hasn’t returned

• Naturally, the Android scheduler
can suspend/resume threads

• If you want thread to run “forever,”
you need to have a while(true)
statement in that run() method

: My

Component

onCreate()

start()

run()

new()

Using Java Threads in Android

join()

: MyThread

Android Concurrency & Synchronization D. C. Schmidt

40

: My

Component

onCreate()

Using Java Threads in Android

• All threads must be given some code
to run

• Android calls the Thread/Runnable
run() method after a new thread
starts up

• The thread can be active
as long as the run() method
hasn’t returned

• When run() returns the thread
is no longer active

Android Concurrency & Synchronization D. C. Schmidt

41

Summary

• Some concurrency mechanisms provided
by Android are based on standard Java
threading classes

Android Concurrency &

Synchronization: Part 3

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II

Systems Programming for Android

mailto:d.schmidt@vanderbilt.edu

Android Concurrency & Synchronization D. C. Schmidt

43

Learning Objectives in this Part of the Module

• Understand how the Java concurrency mechanisms available in Android are
implemented

Android Concurrency & Synchronization D. C. Schmidt

44

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

45

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

46

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

47

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

48

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

49

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

50

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

51

Scheduler

Sleeping

new MyThread()

myThread.start()

Created

Blocking
resource
obtained attempt to access

guarded resource

Runnable

Waiting

lock.notify(),
lock.notifyAll()

lock.wait()

myThread.sleep()

sleeptime
elapsed

Running

run() method
returns

Terminated

State Machine for Java Threads in Android

Android Concurrency & Synchronization D. C. Schmidt

52

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

1. MyThread.start()

Android Concurrency & Synchronization D. C. Schmidt

53

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

1. MyThread.start()

2. Thread.start() // Java method

See libcore/luni/src/main/java/java/lang/Thread.java

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

54

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

See libcore/luni/src/main/java/java/lang/VMThread.java

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

55

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

See dalvik/vm/native/java_lang_VMThread.cpp

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

56

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

5. dvmCreateInterpThread(Object* threadObj,

 int reqStackSize) // Dalvik method

See dalvik/vm/Thread.cpp

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

57

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

Runtime
thread
stack

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

5. dvmCreateInterpThread(Object* threadObj,

 int reqStackSize) // Dalvik method

6. pthread_create(&threadHandle, &threadAttr,

 interpThreadStart, newThread) // Pthreads method

See bionic/libc/bionic/pthread.c

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

58

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

Runtime
thread
stack

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

5. dvmCreateInterpThread(Object* threadObj,

 int reqStackSize) // Dalvik method

6. pthread_create(&threadHandle, &threadAttr,

 interpThreadStart, newThread) // Pthreads method

7. interpThreadStart(void* arg) // Adapter

See dalvik/vm/Thread.cpp

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

59

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

Runtime
thread
stack

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

5. dvmCreateInterpThread(Object* threadObj,

 int reqStackSize) // Dalvik method

6. pthread_create(&threadHandle, &threadAttr,

 interpThreadStart, newThread) // Pthreads method

7. interpThreadStart(void* arg) // Adapter

8. dvmCallMethod(self, run,

 self->threadObj,

 &unused) // Dalvik method

See dalvik/vm/interp/Stack.cpp

http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java
http://libcore/luni/src/main/java/java/lang/Thread.java

Android Concurrency & Synchronization D. C. Schmidt

60

Starting Java Threads
• When start() is called on a Java Thread object a whole series of steps occur

Runtime
thread
stack

1. MyThread.start()

2. Thread.start() // Java method

3. VMThread.create() // Native method

4. Dalvik_java_lang_VMThread_create(const u4* args,

 JValue* pResult) // JNI method

5. dvmCreateInterpThread(Object* threadObj,

 int reqStackSize) // Dalvik method

6. pthread_create(&threadHandle, &threadAttr,

 interpThreadStart, newThread) // Pthreads method

7. interpThreadStart(void* arg) // Adapter

8. dvmCallMethod(self, run,

 self->threadObj,

 &unused) // Dalvik method

9. MyThread.run() // User-defined hook

Android Concurrency & Synchronization D. C. Schmidt

61

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• If you are going to create a long running operation inside of your run()
method, you must ensure your code can stop voluntarily!

Process

Android Concurrency & Synchronization D. C. Schmidt

62

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• This method sends an
interrupt request to
the designated thread

Thread t1 =

 new Thread(new Runnable() {

 public void run(){

 for (int i = 0;

 i < input.length;

 i++) {

 process(input[i]);

 if (Thread.interrupted())

 throw InterruptedException();

 }

 }

t1.start();

...

t1.interrupt();

Android Concurrency & Synchronization D. C. Schmidt

63

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• This method sends an
interrupt request to
the designated thread

• Check Thread.interrupted()
periodically to see if the
thread’s been stopped &
throw InterruptedException

Thread t1 =

 new Thread(new Runnable() {

 public void run(){

 for (int i = 0;

 i < input.length;

 i++) {

 process(input[i]);

 if (Thread.interrupted())

 throw InterruptedException();

 }

 }

t1.start();

...

t1.interrupt();

Android Concurrency & Synchronization D. C. Schmidt

64

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• This method sends an
interrupt request to
the designated thread

• Check Thread.interrupted()
periodically to see if the
thread’s been stopped &
throw InterruptedException

• Certain blocking operations
will be automatically be
interrupted

• e.g., wait(), join(), sleep()
& blocking I/O calls

Thread t1 =

 new Thread(new Runnable() {

 public void run(){

 for (int i = 0;

 i < input.length;

 i++) {

 process(input[i]);

 if (Thread.interrupted())

 throw InterruptedException();

 }

 }

t1.start();

...

t1.interrupt();

See developer.android.com/reference/java/lang/Thread.html#interrupt()

http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()
http://developer.android.com/reference/java/lang/Thread.htmlinterrupt()

Android Concurrency & Synchronization D. C. Schmidt

65

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• Another way is to use a “stop”
flag

public class MyRunnable

 implements Runnable {

 private volatile boolean

 running_ = true;

 public void stop() {

 running_ = false;

}

 public void run() {

 while(running_) {

 // do stuff

 }

 }

}

Android Concurrency & Synchronization D. C. Schmidt

66

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• Another way is to use a “stop”
flag

• Add a volatile boolean
flag “running_” to your
class that implements
Runnable

• Initially, set “running_”
to true

public class MyRunnable

 implements Runnable {

 private volatile boolean

 running_ = true;

 public void stop() {

 running_ = false;

}

 public void run() {

 while(running_) {

 // do stuff

 }

 }

}

en.wikipedia.org/wiki/Volatile_variable#In_Java has more on volatile

http://en.wikipedia.org/wiki/Volatile_variable#In_Java
http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Android Concurrency & Synchronization D. C. Schmidt

67

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• Another way is to use a “stop”
flag

• Add a volatile boolean
flag “running_” to your
class that implements
Runnable

• Have a stop() method that
sets “running_” to false

public class MyRunnable

 implements Runnable {

 private volatile boolean

 running_ = true;

 public void stop() {

 running_ = false;

}

 public void run() {

 while(running_) {

 // do stuff

 }

 }

}

Android Concurrency & Synchronization D. C. Schmidt

68

Stopping Java Threads
• Other than returning from run(), there’s no “stop” method for a Java Thread

• One way to stop a thread is to use the interrupt() method

• Another way is to use a “stop”
flag

• Add a volatile boolean
flag “running_” to your
class that implements
Runnable

• Have a stop() method that
sets “running_” to false

• Check “running_” periodically
to see if the thread’s been
stopped

public class MyRunnable

 implements Runnable {

 private volatile boolean

 running_ = true;

 public void stop() {

 running_ = false;

}

 public void run() {

 while(running_) {

 // do stuff

 }

 }

}

This solution requires developers to periodically check if thread was stopped

Android Concurrency & Synchronization D. C. Schmidt

69

Summary

• Java Threads are implemented using various methods & functions defined by
lower layers of the Android software stack

