
277

Command Processor

The Command Processor design pattern separates the request for a
service from its execution. A command processor component
manages requests as separate objects, schedules their execution, and
provides additional services such as the storing of request objects for
later undo.

Example A text editor usually provides a way to deal with mistakes made by
the user. A simple example is undoing the most recent change. A
more attractive solution is to enable the undoing of multiple changes.
We want to develop such an editor. For the purpose of this discussion
let us call it TEDDI.

The design of TEDDI includes a multi-level undo mechanism and
allows for future enhancements, such as the addition of new features
or a batch mode of operation.

The user interface of TEDDI offers several means of interaction, such
as keyboard input or pop-up menus. The program has to define one
or several callback procedures that are automatically called for every
human-computer interaction.

Context Applications that need flexible and extensible user interfaces, or
applications that provide services related to the execution of user
functions, such as scheduling or undo.

OOPS!
#*@& Patterns book!

278 Design Patterns

Problem An application that includes a large set of features benefits from a
well-structured solution for mapping its interface to its internal
functionality. This allows you to support different modes of user
interaction, such as pop-up menus for novices, keyboard shortcuts
for more experienced users, or external control of the application via
a scripting language.

You often need to implement services that go beyond the core
functionality of the system for the execution of user requests.
Examples are undo, redo, macros for grouping requests, logging of
activity, or request scheduling and suspension.

The following forces shape the solution:

• Different users like to work with an application in different ways.

• Enhancements of the application should not break existing code.

• Additional services such as undo should be implemented
consistently for all requests.

Solution The Command Processor pattern builds on the Command design
pattern in [GHJV95]. Both patterns follow the idea of encapsulating
requests into objects. Whenever a user calls a specific function of the
application, the request is turned into a command object. The
Command Processor pattern illustrates more specifically how
command objects are managed. The See Also section discusses
further differences between the Command pattern and the Command
Processor pattern.

A central component of our pattern description, the command proces-
sor, takes care of all command objects. The command processor
schedules the execution of commands, may store them for later undo,
and may provide other services such as logging the sequence of com-
mands for testing purposes. Each command object delegates the
execution of its task to supplier components within the functional
core of the application.

Structure The abstract command component defines the interface of all
command objects. As a minimum this interface consists of a
procedure to execute a command. The additional services
implemented by the command processor require further interface
procedures for all command objects. The abstract command class of
TEDDI, for example, defines an additional undo method.

Command Processor 279

For each user function we derive a command component from the
abstract command. A command component implements the interface
of the abstract command by using zero or more supplier components.
The commands of TEDDI save the state of associated supplier
components prior to execution, and restore it in case of undo. For
example, the delete command is responsible for storing the text
deleted and its position in the document.

The controller represents the interface of the application. It accepts
requests, such as ‘paste text,’ and creates the corresponding
command objects. The command objects are then delivered to the
command processor for execution. The controller of TEDDI maintains
the event loop and maps incoming events to command objects.

The command processor manages command objects, schedules them
and starts their execution. It is the key component that implements
additional services related to the execution of commands. The
command processor remains independent of specific commands
because it only uses the abstract command interface. In the case of
our TEDDI word processor, the command processor also stores
already-performed commands for later undo.

The supplier components provide most of the functionality required to
execute concrete commands (that is, those related to the concrete
command class, as opposed to the abstract command class). Related
commands often share supplier components. When an undo
mechanism is required, a supplier usually provides a means to save
and restore its internal state. The component implementing the
internal text representation is the main supplier in TEDDI.

Class
Abstract Command

Responsibility
• Defines a uniform

interface to execute
commands.

• Extends the interface
for services of the
command processor,
such as undo and
logging.

Collaborators
-

Class
Command

Responsibility
• Encapsulates a

function request.
• Implements interface

of abstract command.
• Uses suppliers to

perform a request.

Collaborators
• Supplier

280 Design Patterns

The following diagram shows the principal relationships between the
components of the pattern. It demonstrates undo as an example of an
additional service provided by the command processor.

Class
Command Processor

Responsibility
• Activates command

execution.
• Maintains command

objects.
• Provides additional

services related to
command execution.

Collaborators
• Abstract

Command

Class
Controller

Responsibility
• Accepts service

requests.
• Translates requests

into commands.
• Transfers commands

to command
processor.

Collaborators
• Command

Processor
• Command

Class
Supplier

Responsibility
• Provides application

specific functionality

Collaborators
-

Command
Processor

command_stack

do_it(cmd)
undo_it

Supplier

service
get_state

 Command

state_for_undo

do
undo

Controller

event_loop

Abstract
Command

do
undo

 Command

state_for_undo

do
undo

Supplier

app_functions
get_state
restore_state

creates

performs

stores

uses

transfer
command

Command Processor 281

Dynamics The following diagram shows a typical scenario of the Command
Processor pattern implementing an undo mechanism. A request to
capitalize a selected word arrives, is performed and then undone. The
following steps occur:

• The controller accepts the request from the user within its event
loop and creates a ‘capitalize’ command object.

• The controller transfers the new command object to the command
processor for execution and further handling.

• The command processor activates the execution of the command
and stores it for later undo.

• The capitalize command retrieves the currently-selected text from
its supplier, stores the text and its position in the document, and
asks the supplier to actually capitalize the selection.

• After accepting an undo request, the controller transfers this
request to the command processor. The command processor
invokes the undo procedure of the most recent command.

• The capitalize command resets the supplier to the previous state,
by replacing the saved text in its original position

• If no further activity is required or possible of the command, the
command processor deletes the command object.

Controller Command
Processor

Capitalize
Command

Supplier

Command do_it
do

get_selection

capitalize

undo_it
undo

restore_text

delete

request

undo

request

Capitalize

282 Design Patterns

Implementation To implement this pattern, carry out the following steps:

1 Define the interface of the abstract command. The abstract command
class hides the details of all specific commands. This class always
specifies the abstract method required to execute a command. It also
defines the methods necessary to implement the additional services
offered by the command processor. An example is a method
‘getNameAndParameters’ for logging commands.

➥ For the undo mechanism in TEDDI we distinguish three types of
commands. They are modeled as an enumeration, because the
command type may change dynamically, as shown in step 3:

No change. A command that requires no undo. Cursor movement falls
into this category.

Normal. A command that can be undone. Substitution of a word in
text is an example of a normal command.

No undo. A command that cannot be undone, and which prevents the
undo of previously performed normal commands.

If we want our text to become ‘politically correct’ and replace all
occurrences of ‘he’ by ‘he/she’, TEDDI would need to store all
corresponding locations in the document to enable later undo. The
potentially high storage requirement of global replacements is the
main reason why commands belong to the category ‘no undo’.

class AbstractCommand {
public:

enum CmdType { no_change, normal, no_undo };
virtual ~AbstractCommand();
virtual void doit();
virtual void undo();
CmdType getType() const { return type;}
virtual String getName() const { return "NONAME";}

// gives name of command for selection
// in undo/redo menu

protected:
CmdType type;
AbstractCommand(CmdType t=no_change): type(t){}

};

The method getName() is used to display the most recent command to
the user when he selects ‘undo’. ❏

Command Processor 283

2 Design the command components for each type of request that the
application supports. There are several options for binding a
command to its suppliers. The supplier component can be hard-
coded within the command, or the controller can provide the supplier
to the command constructor as a parameter. An example of the
second situation is a multi-document editor in which a command is
connected to a specific document object.

➥ The ‘delete’ command of TEDDI takes the object representing the
text as its first parameter. The range of characters to delete is
specified by two additional parameters:

class DeleteCmd : public AbstractCommand {
public:

DeleteCmd(TEDDI_Text *t, int start, int end)
: AbstractCommand(normal) , mytext(t) ,

from (start) , to (end) {/*...*/}
virtual ~DeleteCmd();
virtual void doit();

// delete characters in mytext
// between from and to and save them in delstr

virtual void undo();
// insert delstr again at position from

String getName() const { return "DELETE " + delstr;}
protected:

TEDDI_Text *mytext;// plan for multiple text buffers
int from,to; // range of characters to delete
String delstr; // save deleted text for undo

};

The implementation of the method doit() calls the method
deleteText() of the TEDDI_Text supplier object. ❏

A command object may ask the user for further parameters. The
TEDDI ‘load text file’ command, for example, activates a dialog to
request the name of the file to be loaded. In this situation the event-
handling system must deliver user input to the command, rather
than to the controller. Commands that require user interaction
during their creation or execution therefore call for additional care.
The design of the event-handling system—which is outside the scope
of this pattern—must be able to handle such situations.

Undoable commands can use the Memento pattern [GHJV95] to store
the state of their supplier for later undo without violating
encapsulation.

284 Design Patterns

3 Increase flexibility by providing macro commands that combine several
successive commands. Apply the Composite pattern [GHJV95] to
implement such a macro command component.

➥ In TEDDI we implement a macro command class, to allow user-
defined shortcuts to frequently-used command sequences:

class MacroCmd : public AbstractCommand {
public:

MacroCmd(String name, AbstractCommand *first)
: AbstractCommand(first->getType()),

macroname(name){/*...*/}
virtual ~MacroCmd();
virtual void doit();

// do every command in cmdlist
virtual void undo();

// undo all commands in cmdlist in reverse order
virtual void finish(); // delete commands in cmdlist
void add(AbstractCommand *next) {

cmdlist.append(next);
if (next->getType() == no_undo) type = no_undo;
/*... */}

String getName() const { return macroname;}
protected:

String macroname;
OrderedCollection<AbstractCommand*> cmdlist;

};

The command type of a MacroCmd depends on the commands that are
added to the macro. An appended command of type no_undo will
prevent the undo of the complete macro command. The undo function
otherwise iterates through cmdlist in reverse order undoing all
normal commands and skipping all commands of type no_change. ❏

4 Implement the controller component. Command objects are created by
the controller, for example with the help of the ‘creational’ patterns
Abstract Factory and Prototype [GHJV95]. However, since the
controller is already decoupled from the supplier components, this
additional decoupling of controller and commands is optional. A
generic menu controller provides an example of the application of the
Prototype pattern. Such a controller contains a command prototype
object for each menu entry, and passes a copy of this object to the
command processor whenever the user selects the menu entry. If
such a menu controller can be dynamically configured with macro
command objects, we can easily implement user-defined menu
extensions.

Command Processor 285

➥ In TEDDI user interaction is handled by callback procedures in
the controller. A callback creates the corresponding command object
and passes it to the command processor. TEDDI uses a global vari-
able theCP that refers to the single command processor component.

void TEDDI_controller::deleteButtonPressed(){
AbstractCommand *delcmd =

new DeleteWordCommand(
this->getCursor(),// pass cursor position
this->getText()); // pass text

theCP->perform(delcmd);
}

On start-up the callback deleteButtonPressed() is registered with the
event-handling system. ❏

5 Implement access to the additional services of the command processor.
A user-accessible additional service is normally implemented by a
specific command class. The command processor supplies the
functionality for the ‘do’ method. Directly calling the interface of the
command processor is also an option. Other intrinsic services such
as logging of commands are performed automatically by the
command processor.

➥ The class UndoCommand provides access to the undo mechanism of
TEDDI. The implementation of this class cooperates with the
internals of the command processor and is thus declared a friend to
it. Note that UndoCommand objects must not be stored by the command
processor, and fall in the category no_change.

class UndoCommand : public AbstractCommand {
public:

UndoCommand()
: AbstractCommand(no_change){}

virtual ~UndoCommand();
virtual void doit() { theCP->undo_lastcmd(); }

};

The method doit() of UndoCommand asks the command processor to
undo the last normal command executed. A class RedoCommand
provides the inverse functionality. Its method doit() makes the
command processor re-execute the undone command. ❏

286 Design Patterns

6 Implement the command processor component. The command
processor receives command objects from the controller and takes
responsibility for them. For each command object, the command
processor starts the execution by calling the do method. A command
processor implemented in C++, for example, is responsible for
deleting command objects that are no longer useful.

Apply the Singleton design pattern [GHJV95] to ensure that only one
command processor exists.

➥ For TEDDI we implement a multi-level undo/redo with two
stacks, one for performed commands and one for undone commands:

class CommandProcessor {
public:

CommandProcessor();
virtual ~CommandProcessor();
virtual void do_cmd(AbstractCommand *cmd){

// do cmd and push it on donestack
cmd->doit();
switch(cmd->getType()){
case AbstractCommand::normal:

donestack.push(cmd); break;
case AbstractCommand::no_undo:

donestack.make_empty();
undonestack.make_empty();
// Fall through:

case AbstractCommand::no_change:
// take responsibility for command objects:
delete cmd;
break;

}
}
friend class UndoCommand; // special relationship
friend class RedoCommand; // special relationship

private:
// this method is only used by UndoCommand
virtual void undo_lastcmd();

// pop cmd from donestack,
// undo it, and push it on undonestack

// this method is only used by RedoCommand
virtual void redo_lastundone(){

AbstractCommand *last = undonestack.pop();
if (last) this->do_cmd(last);

}
private:

Stack<AbstractCommand*> donestack,undonestack;
}; ❏

Command Processor 287

Variants Spread controller functionality. In this variant the role of the controller
can be distributed over several components. For example, each user
interface element such as a menu button could create a command
object when activated. However, the role of the controller is not
restricted to components of the graphical user interface.

Combination with Interpreter pattern. In this variant a scripting lan-
guage provides a programmable interface to an application. The
parser component of the script interpreter takes the role of the con-
troller. Apply the Interpreter pattern [GHJV95] and build the abstract
syntax tree from command objects. The command processor is the cli-
ent in the Interpreter pattern. It carries out interpretation by activat-
ing the commands.

Known Uses ET++ [WGM88] provides a framework of command processors that
support unlimited, bounded, and single undo and redo. The abstract
class Command implements a state machine to track the execution state
of each command. This state machine is used to check if a command
is performed or undone. The controller role is distributed over the
event-handler object hierarchy of an ET++ application.

MacApp [App89] uses the Command Processor design pattern to
provide undoable operations.

InterViews [LCITV92] includes an action class that is an abstract
base class providing the functionality of a command component.

ATM-P [ATM93] implements a simplified version of the Command
Processor pattern. It uses a hierarchy of command classes to pass
command objects around, sometimes across process boundaries. The
receiver of a command object decides how and when to execute it.
Each process implements its own command processor.

SICAT [SICAT95] implements the Command Processor pattern to
provide a well-defined undo facility in the control program and the
graphical SDL editors.

288 Design Patterns

Consequences The Command-Processor pattern provides the following benefits:

Flexibility in the way requests are activated. Different user interface
elements for requesting a function can generate the same kind of
command object. It is thus easy to remap user input to application
functionality. This helps to create an application interface that can be
adapted to user preferences. An example is a text editor that provides
different control modes such as a WordStar or an emacs keyboard.

Flexibility in the number and functionality of requests. The controller
and command processor are implemented independently of the
functionality of individual commands. Changing the implementation
of a command or introducing new command classes does not affect
the command processor or other unrelated parts of the application.
For example, it is possible to build more complex commands from
existing ones. In addition to a macro mechanism, such compound
commands can be pre-programmed, and thus extend the application
without modifying the functional core.

Programming execution-related services. The central command
processor easily allows the addition of services related to command
execution. An advanced command processor can log or store
commands to a file for later examination or replay. A command
processor can queue commands and schedule them at a later time.
This is useful if commands should execute at a specified time, if they
are handled according to priority, or if they will execute in a separate
thread of control. An additional example is a single command
processor shared by several concurrent applications that provides a
transaction control mechanism with logging and rollback of
commands.

Testability at application level. The command processor is an ideal
entry point for application testing. If combined with the Interpreter
pattern [GHJV95] as in the second variant above, regression tests can
be written in the scripting language and applied after changes to the
functional core. Furthermore, logging of command objects executed
by the command processor allows you to analyze error situations. If
the sequence of executed commands is stored persistently, it can be
re-applied after error correction, or reused for regression testing.

Command Processor 289

Concurrency. The Command Processor design pattern allows com-
mands to be executed in separate threads of control. Responsiveness
improves, because the controller does not wait for the execution of a
command to finish. However, this calls for synchronization when the
global variables of the application, for example in a supplier compo-
nent, are accessed by several commands executing in parallel.

The Command Processor pattern imposes some liabilities:

Efficiency loss. As with all patterns that decouple components, the
additional indirection costs storage and time. A controller that
performs a service request directly does not impose an efficiency
penalty. However, extending such a direct controller with new
requests, changing the implementation of a service, or implementing
an undo mechanism all require more effort.

Potential for an excessive number of command classes. An application
with rich functionality may lead to many command classes. You can
handle the complexity of this situation in a number of ways:

• By grouping commands around abstractions.

• By unifying very simple command classes by passing the supplier
object as a parameter.

• By pre-programmed macro-command objects that rely on the
combination of few low-level commands.

Complexity in acquiring command parameters. Some command
objects retrieve additional parameters from the user prior to or during
their execution. This situation complicates the event-handling
mechanism, which needs to deliver events to different destinations,
such as the controller and some activated command object.

See also The Command Processor pattern builds on the Command design
pattern in [GHJV95]. Both patterns depict the idea of encapsulating
service requests into command objects. Command Processor contrib-
utes more details of the handling of command objects. The controller
of the Command Processor pattern takes the role of the client in the
Command pattern. The controller decides which command to use and
creates a new command object for each user request.

In the Command pattern, however, the client configures an invoker
with a command object that can be executed for several user

290 Design Patterns

requests. The command processor receives command objects from
the controller and takes the role of the invoker, executing command
objects. The controller from the Command Processor pattern takes
the role of the client. The suppliers of the Command Processor pattern
correspond to receivers, but we do not require exactly one supplier for
a command.

Credits Studying the CommandProcessor classes of ET++ [WGM88] initially
motivated this pattern description. The Siemens SICAT team
[SICAT95] pointed out the problems with event handling that occur
when a command acquires additional parameters from the user
during execution.

