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 Components that listen for broadcast  
events & receive/react to the events 
 Events implemented as Intent instances 

 Events are broadcast system-wide 

 Interested BroadcastReceivers  
receive Intent via onReceive() 

 BroadcastReceivers have  
no user interface (& other limitations) 

 Android’s Intents framework supports  
a wide range of notification models 

 BroadcastReceivers can be used for both  
user-defined & system events 
 
 
 

http://developer.android.com/reference/android/content/BroadcastReceiver.html 

http://developer.android.com/reference/android/content/BroadcastReceiver.html


 Several system events defined as final static fields in the Intent class 
 Other Android system classes also define events, e.g. the TelephonyManager 

defines events for the change of the phone state  
 The following table lists a few important system events 

Event Description 

Intent.ACTION_BOOT_COMPLETED 
Boot completed. Requires the 
android.permission.RECEIVE_BOOT_
COMPLETED permission 

Intent.ACTION_POWER_CONNECTED Power got connected to the device 

Intent.ACTION_POWER_DISCONNECTED Power got disconnected to the device 

Intent.ACTION_BATTERY_LOW 
Battery gets low, typically used to 
reduce activities in your app which 
consume power 

Intent.ACTION_BATTERY_OKAY Battery status good again 



 BroadcastReceivers are 
registered to receive  
specific Intents 

 Some component  
broadcasts an Intent 

 Activity Manager  
Service identifies  
appropriate recipients & 
delivers event by calling 
onReceive() on 
BroadcastReceiver 

 Event handled in onReceive() 



 BroadcastReceivers can be register in two ways  

 Statically via AndroidManifest.XML 

▪ Include <receiver> in 
AndroidManifest.xml 
<application> 
    <receiver receiver_specs > 
       <intent-filter> event_specs  
       </intent-filter> 
    </receiver> 
</application> 

▪ Receiver registered at boot time or 
when application package is added 
at runtime  

 Dynamically via Context.  
registerReceiver() 

▪ Create an IntentFilter 

▪ Create a BroadcastReceiver 

▪ Register BroadcastReceiver to 
receive Intents that match the 
IntentFilter using Context. 
registerReceiver() 

▪ Call Context.unRegisterReceiver() 
to unregister BroadcastReceiver 

 
 http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html 

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html


 Static BroadcastReceiver instantiated when broadcast is received 
 The object is abandoned when onReceive() returns 

 If new broadcast is  
received, new  
object is created  
& onReceive() is  
called on that  
new instance  
 After that object  

is also abandoned 

 Every static instance of  
BroadcastReceiver goes  
thru component lifetime cycle exactly once 

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime  
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<application …> 
      <activity android:name=".SimpleBroadcast” …>  …  </activity> 
       <receiver android:name=".Receiver2"> 
            <intent-filter android:priority=”5"> 
                <action android:name= 

                "course.examples.BroadcastReceiver.intent.   
                        action.TEST2”>  

         </action> 
            </intent-filter> 
        </receiver> 
  </application>     
  <uses-permission  
             android:name="android.permission.VIBRATE"> 
</uses-permission> 



 Android system doesn’t control dynamic BroadcastReceiver objects  
 Dynamic receivers can be instantiated by application at any time 

before calling registerReceiver() & they are not destroyed after 
onReceive() returns 

 Dynamic BroadcastReceiver objects may go through several 
component lifetime cycles 

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime  
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public class SingleBroadcast extends Activity { 
    public static final String CUSTOM_INTENT = 

"course.examples.BroadcastReceiver.intent.action.TEST1"; 
 
    public void onCreate(Bundle savedInstanceState) { 
        … 
        registerReceiver(new Receiver1(),  

                 new IntentFilter(CUSTOM_INTENT)); 
     } 
} 



 Normal vs. Ordered 
 A normal broadcast Intent is 

sent asynchronously & ordering 
of delivery to set of 
BroadcastReceivers eligible to 
receive it is undefined 

 An ordered broadcast Intent is 
delivered sequentially to each 
member of the set of 
BroadcastReceivers eligible to 
receive it in the order defined by 
priority of associated 
IntentFilters 

 Sticky vs. Non-Sticky 
 A broadcast Intent specified as sticky 

will be retained by system after it has 
been sent 

 A non-sticky intent will be discarded 
after its initial broadcast 

 With or without permissions 
 An app can specify a permission 

when sending a normal or ordered 
broadcast Intent 

 

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html  

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html


//public abstract class Context … 

// send Intent to interested BroadcastReceivers 
void sendBroadcast (Intent intent) 
  
// send Intent to interested BroadcastReceivers 
// if they have the specified permissions 
void sendBroadcast (Intent intent, String receiverPermission) 

http://developer.android.com/reference/android/content/Context.html  

http://developer.android.com/reference/android/content/Context.html


public class SimpleBroadcast extends Activity { 
   public static final String CUSTOM_INTENT = 

"course.examples.BroadcastReceiver.intent.action.TEST2"; 
   public void onCreate(Bundle savedInstanceState) { 
       … 
       Button button = (Button) findViewById(R.id.button); 
       button.setOnClickListener(new OnClickListener() { 
           public void onClick(View v) { 
                 sendBroadcast(new Intent(CUSTOM_INTENT), 
                                                  android.Manifest.permission.VIBRATE); 
           } 
        }); 
… 



//public abstract class Context … 

// send Intent to interested BroadcastReceivers in priority order 
void sendOrderedBroadcast (Intent intent,  String receiverPermission) 

// send Intent to interested BroadcastReceivers in priority order 
// sender can provide various parameters for greater control 

void sendOrderedBroadcast (Intent intent, String receiverPermission,  
                                                      BroadcastReceiver resultReceiver,  

                                                            Handler scheduler, int initialCode,  
                                                      String initialData, Bundle initialExtras) 

 
 

 An ordered broadcast Intent can have additional data associated 
with it: a code (an int), data (a String), & extras (a Bundle) 

 The initial values of the additional data can be specified by the 
sender of the ordered broadcast Intent 

http://developer.android.com/reference/android/content/Context.html  
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public class CompoundOrderedBroadcast extends Activity { 
   … 
   public static final String CUSTOM_INTENT =  

 "course.examples.BroadcastReceiver.intent.action.TEST4"; 
   public void onCreate(Bundle savedInstanceState) { 
      … 
      Button.setOnClickListener(new OnClickListener() { 
         public void onClick(View v) { 
            sendOrderedBroadcast(new Intent(CUSTOM_INTENT), 

               android.Manifest.permission.VIBRATE); 
         } 
   }); 
   … 



public class CompOrdBcastWithResultReceiver extends Activity { 
   public void onCreate(Bundle savedInstanceState) { 
   … 
      button.setOnClickListener(new OnClickListener() { 
         public void onClick(View v) { 
            sendOrderedBroadcast(new Intent(CUSTOM_INTENT), null, 
          new BroadcastReceiver() { 
                    public void onReceive(Context context, Intent intent) { 
                        System.out.println("Final Result is:" + getResultData());               
                     } 
                  },  null, 0, null, null); 
          } 
       }); 
… 



 A normal broadcast Intent isn’t 
available after being sent/processed  

 sendStickyBroadcast(Intent) makes 
the Intent sticky, meaning the Intent 
stays around after broadcast is 
complete 

 When BroadcastReceivers are 
dynamically registered 
 Cached sticky Intents matching the 

specified IntentFilter are broadcast to the 
BroadcastReceiver 

 One matching sticky Intent is returned to 
the caller 

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html#broadcastreceiver_sticky  

 Sticky broadcast Intent can be 
retrieved at any time after 
being sent without registering 
a BroadcastReceiver 
 A sticky broadcast Intent can be 

removed after it has been sent 

 The Android system uses 
sticky broadcast for certain 
system information 
 e.g., the battery status is send  

as sticky Intent & can get 
received at any time 

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html
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//public abstract class Context … 
 
// send sticky Intent to interested BroadcastReceivers 
void sendStickyBroadcast (Intent intent) 
 
// send sticky Intent to interested BroadcastReceivers in priority order 
// sender can provide various parameters for greater control 
void sendStickyOrderedBroadcast (Intent intent,           

       BroadcastReceiver resultReceiver, 
       Handler scheduler,  
       int initialCode,  
       String initialData,  

                                                                        Bundle initialExtras) 

 Broadcaster must have BROADCAST_STICKY permission to send 
sticky Intents 
 



 An app can specify a 
permission when sending 
a normal or ordered 
broadcast Intent 

 BroadcastReceiver can’t 
receive a normal or 
ordered broadcast Intent 
sent with an associated 
permission if the app 
that registered the  
BroadcastReceiver hasn’t 
been granted that 
permission 

 

 An app can specify a permission when 
registering BroadcastReceiver 

 BroadcastReceiver registered with an 
associated permission can’t receive 
any normal or ordered broadcast 
Intent sent by an app that has not 
been granted that permission 

 As of Android 3.1 BroadcastReceivers 
won’t receive Intents if corresponding 
app has never been started by user or 
if user explicitly stopped the 
application via the Android menu in 
Manage Application 

 http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security 
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 Intents are divided into 2 groups: 
 Explicit intents designate the target 

component by its name (the 
component name field has a value set) 
▪ Since component names are generally 

not known to developers of other apps, 
explicit intents are typically used for 
app-internal messages, e.g., an activity 
starting a subordinate service or 
launching a sister activity 

 Implicit intents do not name a target 
(field for component name is blank) 
▪ Implicit intents are often used to 

activate components in other 
applications 

 http://developer.android.com/guide/components/intents-filters.html#ires  

 Some debugging tips 
 Log BroadcastReceivers that 

match an Intent 

▪ Intent.setFlag(FLAG_ 
DEBUG_LOG_RESOLUTION) 

 List BroadcastReceivers 
registered to receive intents 

▪ Dynamic registration 

▪ % adb shell dumpsys  
activity b 

▪ Static registration 

▪ % adb shell dumpsys  
package  

 

http://developer.android.com/guide/components/intents-filters.html


 BroadcastReceivers can have 
one or more intent filters to 
indicate which implicit intents 
they can handle 
 Each filter describes a set of  

intents the component is willing  
to receive  

 Implicit intent is delivered to a 
component only if it can pass 
thru one of the component's 
filters 
 Explicit intent is always delivered  

to its target & filter is not consulted 

 http://developer.android.com/guide/components/intents-filters.html#ires  

 A filter has fields that parallel the 
action, data, & category fields of 
an Intent object 
 An implicit intent is tested against 

the filter in all three areas  
▪ To be delivered to component that 

owns filter, it must pass all three tests 

 If it fails even one of them, the 
Android system won't deliver it to 
the component 
▪ Since a component can have multiple 

intent filters, an intent that doesn’t 
pass through one of a component's 
filters might make it through another 

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
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http://developer.android.com/guide/components/intents-filters.html#ires  

 Only three aspects of an Intent object are consulted when the 
object is tested against an intent filter: action, data (both URI & 
data type), category 

 The extras & flags play no part in resolving which component 
receives an intent 

 Action test example: an <intent-filter> element in the manifest file 
lists actions as 

<intent-filter . . . >  
 <action android:name="com.example.project.SHOW_CURRENT" />  
 <action android:name="com.example.project.SHOW_RECENT" />  
 <action android:name="com.example.project.SHOW_PENDING" /> . . .  
</intent-filter> 

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html


 Events delivered by calling 
onReceive() & passing Intent 
as a parameter 

 onReceive() should be short-
lived 
 Hosting process has high priority 

while onReceive() runs & often 
terminats when onReceive() 
returns 

 BroadcastReceivers should 
beware of asynchronous 
operations 
 e.g., showing a dialog, binding to 

a Service, starting an Activity via 
startActivityForResult() 

 
public class MyReceiver extends  
                                             BroadcastReceiver  
{  
  public void onReceive(Context context,  
                                                Intent intent) { 
    Intent service =  
          new Intent(context,  
                                  MyService.class); 
 
    // We’re starting an unbound service 
    context.startService(service); 
  } 
} 

 If you have potentially long 
running operations you should 
trigger a Service for that 



public class Receiver1 extends BroadcastReceiver { 
   public void onReceive(Context context, Intent intent) { 
      System.out.println(this + ":GOT THE INTENT"); 
      // emulator doesn't support vibration 
      Vibrator v = (Vibrator) context.getSystemService( 

    Context.VIBRATOR_SERVICE); 
     v.vibrate(500); 
   } 
} 



 Passing results 

public class Receiver1 extends BroadcastReceiver { 
   public void onReceive(Context context, Intent intent) { 
      String tmp = getResultData() != null ? getResultData() : ""; 
      setResultData(tmp + ":Receiver 1:"); 
   } 
} 



 Aborting a broadcast 

public class Receiver2 extends BroadcastReceiver { 
   public void onReceive(Context context, Intent intent) { 
      if (isOrderedBroadcast()) {  
     abortBroadcast();   
 } 
    System.out.println(this + ":GOT THE INTENT"); 
    // emulator doesn't support vibration 
    Vibrator v = (Vibrator) context.getSystemService( 

    Context.VIBRATOR_SERVICE); 
    v.vibrate(500); 
   } 
} 



public class StickyIntentBroadcastReceiverActivity extends Activity { 
   public void onCreate(Bundle savedInstanceState) { 
      registerReceiver(new BroadcastReceiver() { 
         public void onReceive(Context context, Intent intent) { 
            if (intent.getAction().equals( 
         Intent.ACTION_BATTERY_CHANGED)) { 
               String age = "Reading taken recently"; 
               if (isInitialStickyBroadcast()) { age = "Reading may be stale”; } 
                   state.setText("Current Battery Level" +  String.valueOf( 

               intent. getIntExtra(BatteryManager.EXTRA_LEVEL, -1))   + "\n" + age); 
            } 
         } 
      }, new IntentFilter(Intent.ACTION_BATTERY_CHANGED)); 
   } 
} 



 BroadcastReceiverCompoundBroadcast 
 BroadcastReceiverCompoundOrderedBroadcast 
 BroadcastReceiverCompoundOrderedBroadcast 

     WithResultReceiver 
 BroadcastReceiverSingleBroadcast 

     DynamicRegistration 
 BroadcastReceiverSingleBroadcastStaticRegistration 
 BroadcastReceiverStickyIntent 
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