
BroadcastReceiver

CS 282
Principles of Operating Systems II

Systems Programming for Android

 Components that listen for broadcast
events & receive/react to the events
 Events implemented as Intent instances

 Events are broadcast system-wide

 Interested BroadcastReceivers
receive Intent via onReceive()

 BroadcastReceivers have
no user interface (& other limitations)

 Android’s Intents framework supports
a wide range of notification models

 BroadcastReceivers can be used for both
user-defined & system events

http://developer.android.com/reference/android/content/BroadcastReceiver.html

http://developer.android.com/reference/android/content/BroadcastReceiver.html

 Several system events defined as final static fields in the Intent class
 Other Android system classes also define events, e.g. the TelephonyManager

defines events for the change of the phone state
 The following table lists a few important system events

Event Description

Intent.ACTION_BOOT_COMPLETED
Boot completed. Requires the
android.permission.RECEIVE_BOOT_
COMPLETED permission

Intent.ACTION_POWER_CONNECTED Power got connected to the device

Intent.ACTION_POWER_DISCONNECTED Power got disconnected to the device

Intent.ACTION_BATTERY_LOW
Battery gets low, typically used to
reduce activities in your app which
consume power

Intent.ACTION_BATTERY_OKAY Battery status good again

 BroadcastReceivers are
registered to receive
specific Intents

 Some component
broadcasts an Intent

 Activity Manager
Service identifies
appropriate recipients &
delivers event by calling
onReceive() on
BroadcastReceiver

 Event handled in onReceive()

 BroadcastReceivers can be register in two ways

 Statically via AndroidManifest.XML

▪ Include <receiver> in
AndroidManifest.xml
<application>
 <receiver receiver_specs >
 <intent-filter> event_specs
 </intent-filter>
 </receiver>
</application>

▪ Receiver registered at boot time or
when application package is added
at runtime

 Dynamically via Context.
registerReceiver()

▪ Create an IntentFilter

▪ Create a BroadcastReceiver

▪ Register BroadcastReceiver to
receive Intents that match the
IntentFilter using Context.
registerReceiver()

▪ Call Context.unRegisterReceiver()
to unregister BroadcastReceiver

 http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

 Static BroadcastReceiver instantiated when broadcast is received
 The object is abandoned when onReceive() returns

 If new broadcast is
received, new
object is created
& onReceive() is
called on that
new instance
 After that object

is also abandoned

 Every static instance of
BroadcastReceiver goes
thru component lifetime cycle exactly once

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime

<application …>
 <activity android:name=".SimpleBroadcast” …> … </activity>
 <receiver android:name=".Receiver2">
 <intent-filter android:priority=”5">
 <action android:name=

 "course.examples.BroadcastReceiver.intent.
 action.TEST2”>

 </action>
 </intent-filter>
 </receiver>
 </application>
 <uses-permission
 android:name="android.permission.VIBRATE">
</uses-permission>

 Android system doesn’t control dynamic BroadcastReceiver objects
 Dynamic receivers can be instantiated by application at any time

before calling registerReceiver() & they are not destroyed after
onReceive() returns

 Dynamic BroadcastReceiver objects may go through several
component lifetime cycles

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime

http://devmaze.wordpress.com/2011/07/17/android-components-lifetime

public class SingleBroadcast extends Activity {
 public static final String CUSTOM_INTENT =

"course.examples.BroadcastReceiver.intent.action.TEST1";

 public void onCreate(Bundle savedInstanceState) {
 …
 registerReceiver(new Receiver1(),

 new IntentFilter(CUSTOM_INTENT));
 }
}

 Normal vs. Ordered
 A normal broadcast Intent is

sent asynchronously & ordering
of delivery to set of
BroadcastReceivers eligible to
receive it is undefined

 An ordered broadcast Intent is
delivered sequentially to each
member of the set of
BroadcastReceivers eligible to
receive it in the order defined by
priority of associated
IntentFilters

 Sticky vs. Non-Sticky
 A broadcast Intent specified as sticky

will be retained by system after it has
been sent

 A non-sticky intent will be discarded
after its initial broadcast

 With or without permissions
 An app can specify a permission

when sending a normal or ordered
broadcast Intent

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

//public abstract class Context …

// send Intent to interested BroadcastReceivers
void sendBroadcast (Intent intent)

// send Intent to interested BroadcastReceivers
// if they have the specified permissions
void sendBroadcast (Intent intent, String receiverPermission)

http://developer.android.com/reference/android/content/Context.html

http://developer.android.com/reference/android/content/Context.html

public class SimpleBroadcast extends Activity {
 public static final String CUSTOM_INTENT =

"course.examples.BroadcastReceiver.intent.action.TEST2";
 public void onCreate(Bundle savedInstanceState) {
 …
 Button button = (Button) findViewById(R.id.button);
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sendBroadcast(new Intent(CUSTOM_INTENT),
 android.Manifest.permission.VIBRATE);
 }
 });
…

//public abstract class Context …

// send Intent to interested BroadcastReceivers in priority order
void sendOrderedBroadcast (Intent intent, String receiverPermission)

// send Intent to interested BroadcastReceivers in priority order
// sender can provide various parameters for greater control

void sendOrderedBroadcast (Intent intent, String receiverPermission,
 BroadcastReceiver resultReceiver,

 Handler scheduler, int initialCode,
 String initialData, Bundle initialExtras)

 An ordered broadcast Intent can have additional data associated
with it: a code (an int), data (a String), & extras (a Bundle)

 The initial values of the additional data can be specified by the
sender of the ordered broadcast Intent

http://developer.android.com/reference/android/content/Context.html

http://developer.android.com/reference/android/content/Context.html

public class CompoundOrderedBroadcast extends Activity {
 …
 public static final String CUSTOM_INTENT =

 "course.examples.BroadcastReceiver.intent.action.TEST4";
 public void onCreate(Bundle savedInstanceState) {
 …
 Button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sendOrderedBroadcast(new Intent(CUSTOM_INTENT),

 android.Manifest.permission.VIBRATE);
 }
 });
 …

public class CompOrdBcastWithResultReceiver extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 …
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sendOrderedBroadcast(new Intent(CUSTOM_INTENT), null,
 new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 System.out.println("Final Result is:" + getResultData());
 }
 }, null, 0, null, null);
 }
 });
…

 A normal broadcast Intent isn’t
available after being sent/processed

 sendStickyBroadcast(Intent) makes
the Intent sticky, meaning the Intent
stays around after broadcast is
complete

 When BroadcastReceivers are
dynamically registered
 Cached sticky Intents matching the

specified IntentFilter are broadcast to the
BroadcastReceiver

 One matching sticky Intent is returned to
the caller

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html#broadcastreceiver_sticky

 Sticky broadcast Intent can be
retrieved at any time after
being sent without registering
a BroadcastReceiver
 A sticky broadcast Intent can be

removed after it has been sent

 The Android system uses
sticky broadcast for certain
system information
 e.g., the battery status is send

as sticky Intent & can get
received at any time

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html
http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

//public abstract class Context …

// send sticky Intent to interested BroadcastReceivers
void sendStickyBroadcast (Intent intent)

// send sticky Intent to interested BroadcastReceivers in priority order
// sender can provide various parameters for greater control
void sendStickyOrderedBroadcast (Intent intent,

 BroadcastReceiver resultReceiver,
 Handler scheduler,
 int initialCode,
 String initialData,

 Bundle initialExtras)

 Broadcaster must have BROADCAST_STICKY permission to send
sticky Intents

 An app can specify a
permission when sending
a normal or ordered
broadcast Intent

 BroadcastReceiver can’t
receive a normal or
ordered broadcast Intent
sent with an associated
permission if the app
that registered the
BroadcastReceiver hasn’t
been granted that
permission

 An app can specify a permission when
registering BroadcastReceiver

 BroadcastReceiver registered with an
associated permission can’t receive
any normal or ordered broadcast
Intent sent by an app that has not
been granted that permission

 As of Android 3.1 BroadcastReceivers
won’t receive Intents if corresponding
app has never been started by user or
if user explicitly stopped the
application via the Android menu in
Manage Application

 http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security

http://developer.android.com/reference/android/content/BroadcastReceiver.html

 Intents are divided into 2 groups:
 Explicit intents designate the target

component by its name (the
component name field has a value set)
▪ Since component names are generally

not known to developers of other apps,
explicit intents are typically used for
app-internal messages, e.g., an activity
starting a subordinate service or
launching a sister activity

 Implicit intents do not name a target
(field for component name is blank)
▪ Implicit intents are often used to

activate components in other
applications

 http://developer.android.com/guide/components/intents-filters.html#ires

 Some debugging tips
 Log BroadcastReceivers that

match an Intent

▪ Intent.setFlag(FLAG_
DEBUG_LOG_RESOLUTION)

 List BroadcastReceivers
registered to receive intents

▪ Dynamic registration

▪ % adb shell dumpsys
activity b

▪ Static registration

▪ % adb shell dumpsys
package

http://developer.android.com/guide/components/intents-filters.html

 BroadcastReceivers can have
one or more intent filters to
indicate which implicit intents
they can handle
 Each filter describes a set of

intents the component is willing
to receive

 Implicit intent is delivered to a
component only if it can pass
thru one of the component's
filters
 Explicit intent is always delivered

to its target & filter is not consulted

 http://developer.android.com/guide/components/intents-filters.html#ires

 A filter has fields that parallel the
action, data, & category fields of
an Intent object
 An implicit intent is tested against

the filter in all three areas
▪ To be delivered to component that

owns filter, it must pass all three tests

 If it fails even one of them, the
Android system won't deliver it to
the component
▪ Since a component can have multiple

intent filters, an intent that doesn’t
pass through one of a component's
filters might make it through another

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/guide/components/intents-filters.html#ires

 Only three aspects of an Intent object are consulted when the
object is tested against an intent filter: action, data (both URI &
data type), category

 The extras & flags play no part in resolving which component
receives an intent

 Action test example: an <intent-filter> element in the manifest file
lists actions as

<intent-filter . . . >
 <action android:name="com.example.project.SHOW_CURRENT" />
 <action android:name="com.example.project.SHOW_RECENT" />
 <action android:name="com.example.project.SHOW_PENDING" /> . . .
</intent-filter>

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

 Events delivered by calling
onReceive() & passing Intent
as a parameter

 onReceive() should be short-
lived
 Hosting process has high priority

while onReceive() runs & often
terminats when onReceive()
returns

 BroadcastReceivers should
beware of asynchronous
operations
 e.g., showing a dialog, binding to

a Service, starting an Activity via
startActivityForResult()

public class MyReceiver extends
 BroadcastReceiver
{
 public void onReceive(Context context,
 Intent intent) {
 Intent service =
 new Intent(context,
 MyService.class);

 // We’re starting an unbound service
 context.startService(service);
 }
}

 If you have potentially long
running operations you should
trigger a Service for that

public class Receiver1 extends BroadcastReceiver {
 public void onReceive(Context context, Intent intent) {
 System.out.println(this + ":GOT THE INTENT");
 // emulator doesn't support vibration
 Vibrator v = (Vibrator) context.getSystemService(

 Context.VIBRATOR_SERVICE);
 v.vibrate(500);
 }
}

 Passing results

public class Receiver1 extends BroadcastReceiver {
 public void onReceive(Context context, Intent intent) {
 String tmp = getResultData() != null ? getResultData() : "";
 setResultData(tmp + ":Receiver 1:");
 }
}

 Aborting a broadcast

public class Receiver2 extends BroadcastReceiver {
 public void onReceive(Context context, Intent intent) {
 if (isOrderedBroadcast()) {
 abortBroadcast();
 }
 System.out.println(this + ":GOT THE INTENT");
 // emulator doesn't support vibration
 Vibrator v = (Vibrator) context.getSystemService(

 Context.VIBRATOR_SERVICE);
 v.vibrate(500);
 }
}

public class StickyIntentBroadcastReceiverActivity extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 registerReceiver(new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 Intent.ACTION_BATTERY_CHANGED)) {
 String age = "Reading taken recently";
 if (isInitialStickyBroadcast()) { age = "Reading may be stale”; }
 state.setText("Current Battery Level" + String.valueOf(

 intent. getIntExtra(BatteryManager.EXTRA_LEVEL, -1)) + "\n" + age);
 }
 }
 }, new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 }
}

 BroadcastReceiverCompoundBroadcast
 BroadcastReceiverCompoundOrderedBroadcast
 BroadcastReceiverCompoundOrderedBroadcast

 WithResultReceiver
 BroadcastReceiverSingleBroadcast

 DynamicRegistration
 BroadcastReceiverSingleBroadcastStaticRegistration
 BroadcastReceiverStickyIntent

	Programming the Android Platform
	BroadcastReceiver Overview	
	System Events
	Typical BroadcastReceiver Use Case
	Registering BroadcastReceivers
	Static BroadcastReceivers
	Static BroadcastReceiver Example
	Dynamic BroadcastReceiver
	Dynamic BroadcastReceiver Example
	Android Event Broadcast Models
	Normal Broadcasts
	Normal Broadcasts (cont.)
	Ordered Broadcasts
	Ordered Broadcasts (cont.)
	Ordered Broadcasts (cont.)
	Sticky Broadcasts
	Sticky Broadcasts (cont.)
	BroadcastReceiver Permissions
	Intent Resolution
	Intent Resolution (cont’d)
	Intent Resolution (cont’d)
	Event Handling in onReceive()
	Handling a Normal Broadcast
	Handling an Ordered Broadcast
	Handling an Ordered Broadcast
	Handling a Sticky Broadcast
	Source Code Examples

