
Activity

CS 282
Principles of Operating Systems II
Systems Programming for Android

 Provides a visual
interface for user
interaction

 Typically supports one
thing a user can do
 View an email

message
 Show a login

screen
 Applications can

include several
activities

 A Task is a chain of related
Activities
 Task not necessarily provided

by a single application
 Gives the illusion that

multiple, unrelated
Activities were developed
as part of the same
application

 The task’s Activity objects are stored on a “back stack” with the
currently running Activity at the top

 At runtime
 Launching an Activity places it on top of the stack
 Hitting BACK button

pops current
activity off
the stack

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-
stack.html

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

 Not started – not yet
created

 Active
 Resumed/Running -

visible, has focus
 Paused - visible, does not

have focus, can be
terminated

 Stopped - not visible,
does not have focus, can
be terminated

 Finished – done
http://developer.android.com/training/

basics/activity-lifecycle/index.html

http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/training/basics/activity-lifecycle/index.html

 Android
communicates state
changes to
application by calling
specific lifecycle
methods

 The ActivityManager
is the system service
in Android that
communicates these
changes http://developer.android.com/reference/

android/app/ActivityManager.html

http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.html

 protected void onCreate()
 protected void onStart()
 protected void onResume()
 protected void onPause()
 protected void onRestart()
 protected void onStop()
 protected void onDestroy()

http://developer.android.com/reference/android/
app/Activity.html

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

 An Activity has several important
methods that are called by the Android
runtime to control its life-cycle:
 onCreate() – this method is called

when the Activity is first created. You
will almost always override this method
& provide setup code in this method

 onStop() – this method is called when
the user leaves your Activity for
another Activity (your Activity is not
visible)

 onPause() – the user leaves your
Activity but it is still visible in the
background (e.g. transparent or partial
foreground coverage)

 An Activity has several important
methods that are called by the
Android runtime to control its life-
cycle:

 onResume() – this method is
called when the user returns to
your Activity from another Activity

 onStart() – this method is called
after your Activity is created or
stopped

 onDestroy() – the Activity is being
released & needs to clean up all
resources

1

 Called when Activity is
first being created

 Setup global state
 Call super.onCreate()
 Inflate UI views
 Configure views as

necessary
 Set the Activity’s content

view

When the main
Activity for your app
shows on screen the
onStart() method is

called

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 final EditText addressfield = (EditText) findViewById(R.id.location);
 final Button button = (Button) findViewById(R.id.mapButton);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 String address = addressfield.getText().toString();
 address = address.replace(' ', '+');
 Intent geoIntent = new Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 } catch (Exception e) {}
 }
 });
 }

 Activity is about to
become visible

 Typical actions
 Reset application

 About to start
interacting with user

 Typical actions
 Start foreground-only

behaviors

Clicking on the “Show
Map” button will open

a new Activity to
display the map

 Note that entering text via
the virtual keyboard doesn’t
change the focus on the UI
nor does it generate any
lifecycle events

 Focus about to switch to
another Activity
 Could also be a “toast”

 Typical actions
 Shutdown foreground-only

behaviors

 Activity is no longer
visible to user
 But may be restarted

later
 Typical actions
 Cache state

When the google map
Activity is launched, its
onCreate() & onStart()

methods are called

The prior Activity’s
onPause() & onStop()

methods are called

 Called if the Activity
has been stopped & is
about to be started
again
 e.g., returning back to a

previously launched
Activity

 Typical actions
 Read cached state

 Activity is about to be
destroyed
 e.g., when the user

presses the “back” button
 Typical actions
 Save persistent state

When the user
completely exits the

app, the original
default Activity’s

onDestroy() method
is called

 Create an Intent object specifying the Activity
to start
 We’ll discuss Intents in detail in later lectures

 Pass newly created Intent to one of the
following methods
 startActivity()
 StartActivityForResult()
▪ Callback to return result when called Activity finishes

protected void onCreate(Bundle savedInstanceState) {
…
 public void onClick(View v) {
 …
 Intent geoIntent = new Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 …
 }
…
}

*Not really my address 

private static final int PICK_CONTACT_REQUEST = 0;
…
protected void onCreate(Bundle savedInstanceState) {
 …
 public void onClick(View v) {
 try {
 Intent intent = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 startActivityForResult(intent, PICK_CONTACT_REQUEST);
 } catch (Exception e) {}
 }
 });
}

 Started Activity sets result by calling
Activity.setResult()
 public final void setResult (int resultCode)
 public final void setResult (int resultCode, Intent data)

 resultCode (an int)
 RESULT_CANCELED
 RESULT_OK
 RESULT_FIRST_USER
▪ Custom resultCodes can be added after this

protected void onActivityResult(int requestCode, int resultCode, Intent data)
{

 if (resultCode == Activity.RESULT_OK &&
requestCode == PICK_CONTACT_REQUEST) {

 …
 String address = / * extract address from data */
 Intent geoIntent = new Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 }
}

 Device configuration can change at runtime
 Keyboard, orientation, locale, etc

 On configuration changes, Android usually
kills & restarts the current Activity

 Activity restarting should be fast. If necessary
you can:
 Retain an Object during a configuration change
 Manually handle the configuration change

 Hard to recompute data can be cached to speed up
handling of configuration changes

 Override onRetainNonConfigurationInstance() to
build & return configuration Object
 Will be called between onStop() & onDestroy()

 Call getLastNonConfigurationInstance() during
onCreate() to recover retained Object

 Note: These methods have been deprecated in
favor of methods in the Fragment class (will discuss
at a later date).

 Can prevent system from restarting Activity
 Declare the configuration changes the Activity

handles in AndroidManifest.xml file, e.g.,
 <activity android:name=".MyActivity

 android:configChanges="orientation keyboardHidden”
…>

 When configuration changes, Activity’s
onConfigurationChanged() method is called &
passed a Configuration object specifying the new
device configuration

 MapLocationFromContacts

	Programming the Android Platform
	Activity
	Tasks
	Tasks
	Task Stack
	Activity States
	The Activity Lifecycle
	Activity Lifecycle Methods
	Activity Lifecycle Methods
	Activity Lifecycle Methods
	MapLocation App Example
	Calling onCreate() in Map App
	Calling onCreate() in Map App
	MapLocation.onCreate()
	Calling onStart() in Map App
	Calling onResume() in Map App
	Entering Text & Launch Map Activity
	Calling onPause() in Map App
	Calling onStop() in Map App
	onPause()/onStop() in Map App
	Calling onRestart() in Map App
	Calling onDestroy() in the Map App
	Calling onDestroy() in the Map App
	Starting Activities
	Using startActivity() in Map App
	MapLocationFromContacts
	Using startActivityForResult()
	startActivityForResult() (cont.)
	startActivityForResult() (cont.)
	Configuration Changes
	Retaining an Object
	Manual Reconfiguration	
	Source Code Examples

