
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Activator Pattern (Part 2)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

2

• Understand how the Activator pattern is applied in Android

Learning Objectives in this Part of the Module

use
resource

(re)assemble
resource

activate resource

use resource

startService()

onStartCommand()

Process.start()

Android Services & Local IPC Douglas C. Schmidt

3

Implementation
• Define services & service identifiers

• Encapsulate each distinct unit of
app functionality into a self-
contained service

frameworks/base/core/java/android/app/Service.java has the source code

Activator POSA4 Design Pattern

public abstract class Service
 extends ContextWrapper
 implements
 ComponentCallbacks2
{
 public abstract IBinder
 onBind(Intent intent);

 ...
}

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

4

Implementation
• Define services & service identifiers

• Encapsulate each distinct unit of
app functionality into a self-
contained service

• Examples of service identifier
representations include URLs,
IORs, TCP/IP port numbers &
host addresses, Android Intents,
etc.

frameworks/base/core/java/android/content/Intent.java has the source code

Activator POSA4 Design Pattern

Intent
Element

Purpose

Name Optional name for a
component

Action A string naming the
action to perform or the
action that took place &
is being reported

Data URI of data to be acted
on & the MIME type of
that data

Category String giving additional
info about the action to
execute

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

5

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Determine overhead of activating

& deactivating services on-demand
vs. keeping them alive for the
duration of the system vs. security
implications, etc.

packages/apps has source code for many Bound & Started Services

Activator POSA4 Design Pattern

Android
Service

Purpose

Media
Playback
Service

Provides “background”
audio playback
capabilities

Exchange
Email
Service

Send/receive email
messages to an
Exchange server

SMS &
MMS
Services

Manage messaging
operations, such as
sending data, text, &
PDU messages

Alert
Service

Handle calendar event
reminders

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

6

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define service execution

context representation
• e.g., an OS process/thread

or middleware container

frameworks/base/services/java/com/android/server/am/ActivityManagerService.java

Activator POSA4 Design Pattern

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

7

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define service execution

context representation
• Define service registration strategy

• e.g., static text file or dynamic
object registration

frameworks/base/services/java/com/android/server/am/ActivityManagerService.java

Activator POSA4 Design Pattern

<service android:name=
"com.android.music.MediaPlaybackService"
 android:exported="false"/>

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

8

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define service execution

context representation
• Define service registration strategy
• Define service initialization strategy

• e.g., stateful vs. stateless services

Activator POSA4 Design Pattern

Android Services are responsible for managing their own persistent state

Android Services & Local IPC Douglas C. Schmidt

9

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define service execution

context representation
• Define service registration strategy
• Define service initialization strategy
• Define service deactivation strategy

• e.g., service-triggered, client-
triggered, or activator-triggered
deactivation

developer.android.com/guide/components/services.html#Lifecycle has more

Activator POSA4 Design Pattern

Started Service Bound Service
• Service runs

indefinitely &
must stop itself
by calling
stopSelf()

• A component can
also stop the
service by calling
stopService()

• When Service is
stopped, Android
destroys it

• Multiple clients
can bind to
same Service

• When all of
them unbind,
the system
destroys the
Service

• The Service
does not need
to stop itself an

http://developer.android.com/guide/components/services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

10

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define interoperation between

services & service execution context
• Typically implemented via some

type of lifecycle callback hook methods

developer.android.com/guide/components/services.html#LifecycleCallbacks

Activator POSA4 Design Pattern

http://developer.android.com/guide/components/services.html#LifecycleCallbacks

Android Services & Local IPC Douglas C. Schmidt

11

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define interoperation between

services & service execution context
• Implement the activator

• Determine the association
between activators & services
• e.g., singleton (shared) vs.

exclusive vs. distributed
activator

The Android Activity Manager Service is a singleton activator

Activator POSA4 Design Pattern

Android Services & Local IPC Douglas C. Schmidt

12

Implementation
• Define services & service identifiers
• Identify services to activate &

deactivate on demand
• Develop service activation &

deactivation strategy
• Define interoperation between

services & service execution context
• Implement the activator

• Determine the association
between activators & services

• Determine the degree
of transparency
• e.g., explicit vs. transparent activator

Activator POSA4 Design Pattern

Android Started & Bound Services use an explicit activator model

Android Services & Local IPC Douglas C. Schmidt

13

• The NetworkSettings Activity uses the Activator pattern to launch the

NetworkQueryService to assist in querying the network for service availability

Applying Activator in Android

Activator POSA4 Design Pattern

NetworkSettings

onCreate()

ActivityManagerService

startService()

1

onServiceConnected()

mNetworkQuery
ServiceConnection

loadNetworksList()

startService()

onQueryComplete()

mCallback
Call startService() to launch
the NetworkQueryService &

keep it running

packages/apps/Phone/src/com/android/phone/NetworkSetting.java has source code

http://packages/apps/Contacts/src/com/android/contacts/activities/AttachPhotoActivity.java

Android Services & Local IPC Douglas C. Schmidt

14

• The NetworkSettings Activity uses the Activator pattern to launch the

NetworkQueryService to assist in querying the network for service availability

Applying Activator in Android

Activator POSA4 Design Pattern

NetworkSettings

onCreate()

NetworkQueryService

ActivityManagerService

startService()

1

onServiceConnected()

mNetworkQuery
ServiceConnection

loadNetworksList()

Process.start()
2

onQueryComplete()

mCallback

frameworks/base/services/java/com/android/server/am/ActivityManagerService.java

http://frameworks/services/java/com/android/server/am/ActivityManagerService.java

Android Services & Local IPC Douglas C. Schmidt

15

• The NetworkSettings Activity uses the Activator pattern to launch the

NetworkQueryService to assist in querying the network for service availability

Applying Activator in Android

Activator POSA4 Design Pattern

NetworkSettings

onCreate()

NetworkQueryService

 onCreate()

 onBind()

ActivityManagerService

startService()

1

onServiceConnected()

mNetworkQuery
ServiceConnection

loadNetworksList() mBinder

startNetworkQuery()

2

onQueryComplete()

mCallback

mHandler

handleMessage()

3 initialize
Service

packages/apps/Phone/src/com/android/phone/NetworkQueryService.java has source

http://packages/apps/Contacts/src/com/android/contacts/activities/AttachPhotoActivity.java

Android Services & Local IPC Douglas C. Schmidt

16

• The NetworkSettings Activity uses the Activator pattern to launch the

NetworkQueryService to assist in querying the network for service availability

Applying Activator in Android

packages/apps/Phone/src/com/android/phone/NetworkSetting.java has source code

Activator POSA4 Design Pattern

NetworkSettings

onCreate()

NetworkQueryService

 onCreate()

 onBind()

ActivityManagerService

startService()
onServiceConnected()

mNetworkQuery
ServiceConnection

loadNetworksList()

bindService()

mBinder

startNetworkQuery()

Process.start()

onQueryComplete()

mCallback

mHandler

handleMessage()

4

1

2
3

Call bindService() to
get a binder object for
use with async oneway

method calls

http://packages/apps/Contacts/src/com/android/contacts/activities/AttachPhotoActivity.java

Android Services & Local IPC Douglas C. Schmidt

17

use
resource

(re)assemble
resource

activate resource

use resource

startService()

onStartCommand()

Process.start()

Summary

• The Android Started & Bound Services implement the Activator pattern

Android Services & Local IPC Douglas C. Schmidt

18

use
resource

(re)assemble
resource

activate resource

use resource

onStartCommand()

Process.start()

Summary

• The Android Started & Bound Services implement the Activator pattern
• These Services can process requests in background processes or threads

• Processes can be configured depending on directives in the
AndroidManifest.xml file

startService()

Android Services & Local IPC Douglas C. Schmidt

19

use
resource

(re)assemble
resource

activate resource

use resource

onStartCommand()

Process.start()

Summary

• The Android Started & Bound Services implement the Activator pattern
• These Services can process requests in background processes or threads

• Processes can be configured depending on directives in the
AndroidManifest.xml file

• Threads can be programmed using IntentService et al.

startService()

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Proxy Pattern (Part 1)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

21 See en.wikipedia.org/wiki/Proxy_pattern for more on Proxy pattern

• Understand the Proxy pattern

Learning Objectives in this Part of the Module

Process Boundary

http://en.wikipedia.org/wiki/Proxy_pattern

Android Services & Local IPC Douglas C. Schmidt

22

Challenge: Simplifying Access to Remote Objects
Context
• It is often infeasible—or impossible

—to access an object directly
• e.g., may reside in server process

Android’s Binder provides a high-performance IPC mechanism

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

23

Challenge: Simplifying Access to Remote Objects
Context
• It is often infeasible—or impossible

—to access an object directly
• Partitioning of objects in a system

may change as requirements evolve

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

24

Problems
• Manually (de)marshaling messages

can be tedious, error-prone, &
inefficient

Challenge: Simplifying Access to Remote Objects
DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

25

Problems
• Manually (de)marshaling messages

can be tedious, error-prone, &
inefficient

• It is time-consuming to re-write, re-
configure, & re-deploy components
across address spaces as
requirements & environments
change

Challenge: Simplifying Access to Remote Objects
DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

26

Solution
• Define a proxy that provides

a surrogate thru which clients
can access remote objects

Proxy

methods
1 1

Download
Activity

RemoteObject

methods

Challenge: Simplifying Access to Remote Objects

Android Services & Local IPC Douglas C. Schmidt

27

Solution
• Define a proxy that provides

a surrogate thru which clients
can access remote objects

• e.g., one way to implement this in Android
• A service implements a Binder object

that a client can’t access directly
since it may be in a different process

Download
Activity

Proxy

methods
1 1

RemoteObject

methods

Challenge: Simplifying Access to Remote Objects

Binder

methods

Android Services & Local IPC Douglas C. Schmidt

28

Download
Activity

Proxy

methods
1 1

RemoteObject

methods

Solution
• Define a proxy that provides

a surrogate thru which clients
can access remote objects

• e.g., one way to implement this in Android
• A service implements a Binder object

that a client can’t access directly
since it may be in a different process

• Proxy represents the Binder object via a
common AIDL interface & ensures correct access to it

Challenge: Simplifying Access to Remote Objects
AIDL File

methods

Android Services & Local IPC Douglas C. Schmidt

29

Download
Activity

Proxy

methods
1 1

RemoteObject

methods

Solution
• Define a proxy that provides

a surrogate thru which clients
can access remote objects

• e.g., one way to implement this in Android
• A service implements a Binder object

that a client can’t access directly
since it may be in a different process

• Proxy represents the Binder object via a
common AIDL interface & ensures correct access to it

• Clients calls a method on the proxy to access Binder object
• Whether the object is in-process or out-of-process can be

controlled via the AndroidManifest.xml config file

The Proxy works together with Binder RPC to implement the Broker pattern

Challenge: Simplifying Access to Remote Objects
AIDL File

methods

Android Services & Local IPC Douglas C. Schmidt

30

Intent
• Provide a surrogate or placeholder for another object to control access to it

Proxy GoF Object Structural
POSA1 also contains the Proxy pattern

See en.wikipedia.org/wiki/Proxy_pattern for more on Proxy pattern

Process Boundary

http://en.wikipedia.org/wiki/Proxy_pattern

Android Services & Local IPC Douglas C. Schmidt

31

Applicability
• When there is a need for a more sophisticated reference to a object than a

simple pointer or simple reference can provide

Proxy GoF Object Structural
POSA1 also contains the Proxy pattern

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

32

Applicability
• When there is a need for a more sophisticated reference to a object than a

simple pointer or simple reference can provide
• Help ensure remote objects look/act as much like local components

as possible from a client app perspective

Proxy GoF Object Structural

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

33

Applicability
• When there is a need for a more sophisticated reference to a object than a

simple pointer or simple reference can provide
• Help ensure remote objects look/act as much like local components

as possible from a client app perspective
• When there′s a need for statically-typed method invocations

Proxy GoF Object Structural

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

34

Proxy GoF Object Structural
Structure & Participants

AIDL
interface

Android Services & Local IPC Douglas C. Schmidt

35

Proxy GoF Object Structural
Structure & Participants

Generated
Stub.Proxy

Android Services & Local IPC Douglas C. Schmidt

36

Proxy GoF Object Structural
Structure & Participants

Generated Stub &
implemented interface

Android Services & Local IPC Douglas C. Schmidt

37

Proxy GoF Object Structural
Dynamics

: RealSubject : Proxy : Client

method()

method()

pre-processing:
e.g.,marshaling

post-processing:
e.g., unmarshaling

Client invokes method on the proxy

Android Services & Local IPC Douglas C. Schmidt

38

Proxy GoF Object Structural
Dynamics

: RealSubject : Proxy : Client

method()

method()

pre-processing:
e.g.,marshaling

post-processing:
e.g., unmarshaling

Proxy converts method to
message & then invokes

method on the real subject

Android Services & Local IPC Douglas C. Schmidt

39

Proxy GoF Object Structural
Dynamics

: RealSubject : Proxy : Client

method()

method()

pre-processing:
e.g.,marshaling

post-processing:
e.g., unmarshaling

Proxy converts the return from the
method call on the RealSubject back
into results from the original method

Android Services & Local IPC Douglas C. Schmidt

40

Consequences
+ Decoupling client from object location

Proxy GoF Object Structural

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

41

public String downloadImage(String uri) ... {
 android.os.Parcel _data =
 android.os.Parcel.obtain();
 android.os.Parcel _reply =
 android.os.Parcel.obtain();
 java.lang.String _result;
 _data.writeInterfaceToken(DESCRIPTOR);
 _data.writeString(url);
 mRemote.transact(Stub.
 TRANSACTION_downloadImage, _data, _reply, 0);
 _reply.readException();
 _result = _reply.readString();
 ...
 return _result;
}

Consequences
+ Decoupling client from object location
+ Simplify tedious & error-prone details

Proxy GoF Object Structural

Download
Activity

Proxy

methods
1

AIDL File

methods

1
RemoteObject

methods

Android Services & Local IPC Douglas C. Schmidt

42

Consequences
− Additional overhead from indirection

or inefficient proxy implementations

Proxy GoF Object Structural

public String downloadImage(String uri) ... {
 android.os.Parcel _data =
 android.os.Parcel.obtain();
 android.os.Parcel _reply =
 android.os.Parcel.obtain();
 java.lang.String _result;
 _data.writeInterfaceToken(DESCRIPTOR);
 _data.writeString(url);
 mRemote.transact(Stub.
 TRANSACTION_downloadImage, _data, _reply, 0);
 _reply.readException();
 _result = _reply.readString();
 ...
 return _result;
}

Download
Activity

Proxy

methods
1

AIDL File

methods

1
RemoteObject

methods

Android Services & Local IPC Douglas C. Schmidt

43

Consequences
− Additional overhead from indirection

or inefficient proxy implementations
− May impose overly restrictive type

system

Proxy GoF Object Structural

Download
Activity

Proxy

methods
1

AIDL File

methods

1
RemoteObject

methods

Android Services & Local IPC Douglas C. Schmidt

44

Consequences
− Additional overhead from indirection

or inefficient proxy implementations
− May impose overly restrictive type

system
− It’s not possible to entirely shield

clients from problems with IPC across
processes & networks

Proxy GoF Object Structural

Download
Activity

Proxy

methods
1

AIDL File

methods

1
RemoteObject

methods

Android Services & Local IPC Douglas C. Schmidt

45

Known Uses
• Remote Procedure Call (RPC) middleware

• e.g., ONC RPC & OSF Distributed Computing Environment (DCE)

Proxy GoF Object Structural

en.wikipedia.org/wiki/Distributed_Computing_Environment

http://en.wikipedia.org/wiki/Distributed_Computing_Environment

Android Services & Local IPC Douglas C. Schmidt

46

Known Uses
• Remote Procedure Call (RPC) middleware
• Distributed object computing middleware

• e.g., Sun Java Remote Method Invocation (RMI) & OMG Common Object
Request Broker Architecture (CORBA)

Proxy GoF Object Structural

Stub.Proxy

Client OBJ
REF

in args
operation()

out args +
return

IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL

Object (Servant)

en.wikipedia.org/wiki/Object_request_broker

http://en.wikipedia.org/wiki/Object_request_broker

Android Services & Local IPC Douglas C. Schmidt

47

Known Uses
• Remote Procedure Call (RPC) middleware
• Distributed object computing middleware
• Local RPC middleware on smartphones

• e.g., Android Binder

Proxy GoF Object Structural

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels Parcels

Parcels

en.wikipedia.org/wiki/OpenBinder

http://en.wikipedia.org/wiki/OpenBinder

Android Services & Local IPC Douglas C. Schmidt

48

• The Iterator pattern illustrates a recurring theme throughout the history of
computing: useful patterns evolve into programming language features

Evolving Patterns into Programming Languages

Android Services & Local IPC Douglas C. Schmidt

49

• Assembly language patterns in the early days of computing led to
language features in FORTRAN & C
• e.g., closed subroutines & control constructs, such as loop, if/else, &

switch statements

for (int i = 0; i < MAX_SIZE; ++i)

 …

switch (tag_) {

case NUM: …

if (6 == 9)
 printf ("I don’t mind");

Evolving Patterns into Programming Languages

Android Services & Local IPC Douglas C. Schmidt

50

• Information hiding patterns done in assembly languages & C led to
modularity features in Modula 2, Ada, C++, & Java
• e.g., modules, packages, & access control sections

package com.example.expressiontree;

namespace std { …

class public class LeafNode extends ComponentNode {

 private int item;

 public int item() { return item; }

 ...

Evolving Patterns into Programming Languages

Android Services & Local IPC Douglas C. Schmidt

51

• Preprocessor-style patterns in early C++ toolkits led to C++ templates &
template meta-programming patterns are enhancing C++ templates

template <typename T>
class argv_iterator :
 public std::iterator <std::forward_iterator_tag,
 T> {
public:
 argv_iterator (void) {}
 argv_iterator (int argc,
 char **argv,
 int increment);

 ...

Evolving Patterns into Programming Languages

Android Services & Local IPC Douglas C. Schmidt

52

• Iterator patterns in C++ Standard Template Library (STL) led to built-in
support for range-based for loops in C++11
• e.g., languages like Java & C# also have built-in iterator support

Evolving Patterns into Programming Languages

Not all patterns lend themselves to programming language support!

for(ExpressionTree it : exprTree)
 doSomethingWithIterator(it);

for (auto &it : expr_tree)
 do_something_with_iterator (it);

Java for-each loop

C++11 range-based for loop

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Proxy Pattern (Part 2)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

54

• Understand how the Proxy pattern is applied in Android

Learning Objectives in this Part of the Module

See en.wikipedia.org/wiki/Proxy_pattern for more on Proxy pattern

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels

Parcels

Parcels

http://en.wikipedia.org/wiki/Proxy_pattern

Android Services & Local IPC Douglas C. Schmidt

55

Implementation
• Auto-generated vs. hand-crafted

Proxy GoF Object Structural

Android Services & Local IPC Douglas C. Schmidt

56

Implementation
• Auto-generated vs. hand-crafted
• A proxy can cache stable info

about the subject to postpone
accessing it remotely

Proxy GoF Object Structural

Android Services & Local IPC Douglas C. Schmidt

57

Implementation
• Auto-generated vs. hand-crafted
• A proxy can cache stable info

about the subject to postpone
accessing it remotely

• Overloading operator−> in C++

Proxy GoF Object Structural
template <class TYPE> class ACE_TSS {
 TYPE *operator->() const {
 TYPE *tss_data = 0;
 if (!once_) {
 ACE_Guard<ACE_Thread_Mutex>
 g (keylock_);
 if (!once_) {
 ACE_OS::thr_keycreate
 (&key_, &cleanup_hook);
 once_ = true;
 }
 }
 ACE_OS::thr_getspecific
 (key_, (void **) &tss_data);
 if (tss_data == 0) {
 tss_data = new TYPE;
 ACE_OS::thr_setspecific
 (key_, (void *) tss_data);
 }
 return tss_data;
 }

www.dre.vanderbilt.edu/~schmidt/PDF/TSS-pattern.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/TSS-pattern.pdf

Android Services & Local IPC Douglas C. Schmidt

58

public interface IDownload extends android.os.Iinterface {
 public static abstract class Stub extends android.os.Binder
 implements IDownload {

 public Stub() {
 this.attachInterface(this, DESCRIPTOR);
 }

 ...

Construct the stub & attach it to the interface

 Local-side IPC
implementation class

Proxy GoF Object Structural
Android Example in Java

Android Services & Local IPC Douglas C. Schmidt

59

public interface IDownload extends android.os.Iinterface {
 public static abstract class Stub extends android.os.Binder
 implements IDownload {

 public static IDownload asInterface(android.os.IBinder obj) {
 if ((obj==null)) return null;
 android.os.IInterface iin = (android.os.IInterface)
 obj.queryLocalInterface(DESCRIPTOR);
 if (((iin != null) && (iin instanceof IDownload)))
 return ((IDownload)iin);
 return new IDownload.Stub.Proxy(obj);
 }

 ...

Cast an IBinder object into an IDownload
interface, generating a proxy if needed

Proxy GoF Object Structural
Android Example in Java

Android Services & Local IPC Douglas C. Schmidt

60

public interface IDownload extends android.os.Iinterface {
 public static abstract class Stub ... {
 private static class Proxy implements IDownload {

 private android.os.IBinder mRemote;

 Proxy(android.os.IBinder remote) {
 mRemote = remote;
 }
 ...

This code fragment has been simplified a bit to fit onto the slide

Used by a client to call a remote method

Cache Binder for subsequent use by Proxy

Proxy GoF Object Structural
Android Example in Java

Android Services & Local IPC Douglas C. Schmidt

61

public interface IDownload extends android.os.Iinterface {
 public static abstract class Stub ... {
 private static class Proxy implements IDownload {
 ...

 public String downloadImage(String uri) ... {
 android.os.Parcel _data = android.os.Parcel.obtain();
 android.os.Parcel _reply = android.os.Parcel.obtain();
 _data.writeString(url);
 mRemote.transact(Stub.TRANSACTION_downloadImage, _data,
 _reply, 0);
 _reply.readException();
 java.lang.String _result = _reply.readString();
 ...
 return _result;
 ...

This code fragment has been simplified a bit to fit onto the slide

Marshal the parameter, transmit to the
remote object, & demarshal the result

Proxy GoF Object Structural
Android Example in Java

Android Services & Local IPC Douglas C. Schmidt

62

public interface IDownload extends android.os.Iinterface {
 public static abstract class Stub extends android.os.Binder
 implements IDownload {

 public boolean onTransact(int code, android.os.Parcel data,
 android.os.Parcel reply, int flags) ... {
 switch (code) {
 case TRANSACTION_downloadImage:
 data.enforceInterface(DESCRIPTOR);
 java.lang.String _arg0 = data.readString();
 java.lang.String _result = this.downloadImage(_arg0);
 reply.writeNoException();
 reply.writeString(_result);
 return true;
 ...

This code fragment has been simplified a bit to fit onto the slide

This method is dispatched by Binder RPC to
trigger a callback on our downloadImage()

Demarshal the parameter,
dispatch the upcall, &
marshal the result

Proxy GoF Object Structural
Android Example in Java

Android Services & Local IPC Douglas C. Schmidt

63

• The Android generated AIDL proxies implement the Proxy pattern

Summary

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels

Parcels

Parcels

Android Services & Local IPC Douglas C. Schmidt

64

Summary

• The Android generated AIDL proxies implement the Proxy pattern
• Proxies support a remote method invocation style of IPC

• As a result, there is no API difference between a call to a local or a remote
component, which enhances location-independent communication within an
Android App

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels

Parcels

Parcels

Android Services & Local IPC Douglas C. Schmidt

65

Summary

• The Android generated AIDL proxies implement the Proxy pattern
• Proxies support a remote method invocation style of IPC
• In addition, a proxy can shield its clients from changes in the represented

component’s ‘real’ interfaces, which avoids rippling effects in case of
component evolution

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels

Parcels

Parcels

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
The Broker Pattern (Part 1)

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

67

• Understand the Broker pattern

Learning Objectives in this Part of the Module

See www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Process Boundary

http://www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

68

Challenge: Isolating Communication Concerns
Context
• A system with multiple (potentially)

remote objects that interact
synchronously or asynchronously

Android’s Binder provides a high-performance IPC mechanism

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

69

Challenge: Isolating Communication Concerns
Problems
• App developers shouldn′t need to handle

• Low-level message passing, which is
fraught with accidental complexity

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

70

Challenge: Isolating Communication Concerns
Problems
• App developers shouldn′t need to handle

• Low-level message passing, which is
fraught with accidental complexity

• Networked computing diversity
• e.g., heterogeneous languages,

operating systems, protocols,
hareware, etc.

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

71

Challenge: Isolating Communication Concerns
Problems
• App developers shouldn′t need to handle

• Low-level message passing, which is
fraught with accidental complexity

• Networked computing diversity
• Inherent complexities of

communication
• e.g., partial failures, security

mechanisms, latency, etc.

See www.dre.vanderbilt.edu/~schmidt/comm-foreword.html for more info

DownloadActivity Process

DownloadService Process

http://www.dre.vanderbilt.edu/~schmidt/comm-foreword.html

Android Services & Local IPC Douglas C. Schmidt

72

Use a Broker to Handle Communication Concerns
Solution
• Separate system communication

functionality from app functionality
by providing a broker that isolates
communication-related concerns

Download
Activity

RemoteObject

methods

Binder IPC
mechanisms

Broker

Android Services & Local IPC Douglas C. Schmidt

73

Solution
• Separate system communication

functionality from app functionality
by providing a broker that isolates
communication-related concerns

• e.g., one way to implement this in Android
• A Service implements an Binder object

that a client can’t accessible directly
since it may reside in different process

Use a Broker to Handle Communication Concerns

Proxy

methods

Download
Activity

Stub

methods Binder IPC
mechanisms

Broker

BinderObject

methods

Android Services & Local IPC Douglas C. Schmidt

74

Solution
• Separate system communication

functionality from app functionality
by providing a broker that isolates
communication-related concerns

• e.g., one way to implement this in Android
• A Service implements an Binder object

that a client can’t accessible directly
since it may reside in different process

• Clients call a method on the proxy, which
uses the Android Binder IPC mechanism
(broker) to communicate with the object
across process boundaries

Use a Broker to Handle Communication Concerns

Proxy

methods

Download
Activity

Stub

methods Binder IPC
mechanisms

Broker

BinderObject

methods

Android Services & Local IPC Douglas C. Schmidt

75

Solution
• Separate system communication

functionality from app functionality
by providing a broker that isolates
communication-related concerns

• e.g., one way to implement this in Android
• A Service implements an Binder object

that a client can’t accessible directly
since it may reside in different process

• Clients call a method on the proxy, which
uses the Android Binder IPC mechanism
(broker) to communicate with the object
across process boundaries

• The Binder IPC mechanisms use a stub to upcall a method to the object

Use a Broker to Handle Communication Concerns

Android Binder uses Broker & Proxy to support sync & async communication

Proxy

methods

Download
Activity

Stub

methods Binder IPC
mechanisms

Broker

BinderObject

methods

Android Services & Local IPC Douglas C. Schmidt

76

Broker POSA1 Architectural Pattern
Intent
• Connect clients with remote objects by mediating invocations from clients to

remote objects, while encapsulating the details of local and/or remote IPC

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

77

Broker POSA1 Architectural Pattern
Applicability
• When apps need reusable capabilities that

• Support (potentially) remote communication in a location transparent
manner

• Detect/handle faults & manage end-to-end QoS
• Encapsulate low-level systems programming details

• e.g., memory management, connection management, data transfer,
concurrency, synchronization, etc.

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

78

Activity

Broker POSA1 Architectural Pattern
Structure & Participants

(De)Marshaler
serialize()
deserialize()

Servant
methodA()
methodB()

Dispatcher
receiveRequest()
registerServant()
handleEvents()
dispatchEvent()

Requestor
createRequest()
sendRequest()
receiveResponse()

Client

Android Services & Local IPC Douglas C. Schmidt

79

Structure & Participants

Binder RPC
framework

Broker POSA1 Architectural Pattern

(De)Marshaler
serialize()
deserialize()

Servant
methodA()
methodB()

Dispatcher
receiveRequest()
registerServant()
handleEvents()
dispatchEvent()

Requestor
createRequest()
sendRequest()
receiveResponse()

Client

Android Services & Local IPC Douglas C. Schmidt

80

Structure & Participants
Generated

Proxy & Stub

Broker POSA1 Architectural Pattern

(De)Marshaler
serialize()
deserialize()

Servant
methodA()
methodB()

Dispatcher
receiveRequest()
registerServant()
handleEvents()
dispatchEvent()

Requestor
createRequest()
sendRequest()
receiveResponse()

Client

Android Services & Local IPC Douglas C. Schmidt

81

Binder subclass

Broker POSA1 Architectural Pattern
Structure & Participants

(De)Marshaler
serialize()
deserialize()

Servant
methodA()
methodB()

Dispatcher
receiveRequest()
registerServant()
handleEvents()
dispatchEvent()

Requestor
createRequest()
sendRequest()
receiveResponse()

Client

www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

http://www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

82

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Object is registered with
the Broker (can occur at
various points in time)

Android Services & Local IPC Douglas C. Schmidt

83

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Invoke operation (note
implicit activation)

Android Services & Local IPC Douglas C. Schmidt

84

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Establish connection (if it
doesn’t exist already)

Android Services & Local IPC Douglas C. Schmidt

85

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Marshal request & send
to Object via Broker

A Broker might or might not run in a separate process or thread

Android Services & Local IPC Douglas C. Schmidt

86

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Demarshal request
& dispatch to Object

Android Services & Local IPC Douglas C. Schmidt

87

Dynamics
Broker POSA1 Architectural Pattern

operation (params) connect

send_request marshal
unmarshal
dispatch

operation (params)

 result
marshal receive_reply

unmarshal result

start_up register_object
assigned port

: Broker : Requestor : Dispatcher : Client : Object

Send response back
to Client via Broker

Android Services & Local IPC Douglas C. Schmidt

88

Consequences
+ Location independence

• A broker is responsible for locating
servers, so clients need not know
where servers are located

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

89

Consequences
+ Location independence
+ Separation of concerns

• If server implementations change
without affecting interfaces clients
should not be affected

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

90

Consequences
+ Location independence
+ Separation of concerns
+ Portability, modularity, reusability,

etc.
• A broker hides OS & network details

from clients & servers via indirection
& abstraction layers
• e.g., APIs, proxies, adapters,

bridges, wrapper facades, etc.

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

91

Consequences
− Additional time & space overhead

• Applications using brokers may be
slower than applications written
manually

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

92

Consequences
− Additional time & space overhead
− Potentially less reliable

• Compared with non-distributed
software applications, distributed
broker systems may incur lower fault
tolerance

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

93

Consequences
− Additional time & space overhead
− Potentially less reliable
− May complicate debugging & testing

• Testing & debugging of distributed
systems is tedious because of all the
components involved

Broker POSA1 Architectural Pattern

 Broker

DownloadActivity Process

DownloadService Process

Android Services & Local IPC Douglas C. Schmidt

94

Known Uses
• Remote Procedure Call (RPC) middleware

• e.g., ONC RPC & OSF Distributed Computing Environment (DCE)

en.wikipedia.org/wiki/Distributed_Computing_Environment

Broker POSA1 Architectural Pattern

http://en.wikipedia.org/wiki/Distributed_Computing_Environment

Android Services & Local IPC Douglas C. Schmidt

95

Known Uses
• Remote Procedure Call (RPC) middleware
• Distributed object computing middleware

• e.g., Sun Java Remote Method Invocation (RMI) & OMG Common Object
Request Broker Architecture (CORBA)

Stub.Proxy

Client OBJ
REF

in args
operation()

out args +
return

IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL

Object (Servant)

en.wikipedia.org/wiki/Object_request_broker

Broker POSA1 Architectural Pattern

http://en.wikipedia.org/wiki/Object_request_broker

Android Services & Local IPC Douglas C. Schmidt

96

Known Uses
• Remote Procedure Call (RPC) middleware
• Distributed object computing middleware
• Local RPC middleware on smartphones

• e.g., Android Binder

Process Boundary

Stub.Proxy
Stub

Bound
Service

transact()

transact()

onTransact()

onTransact()

Parcels

Parcels Parcels

Parcels

en.wikipedia.org/wiki/OpenBinder

Broker POSA1 Architectural Pattern

http://en.wikipedia.org/wiki/OpenBinder

Android Services & Local IPC Douglas C. Schmidt

97

• Broker provides a straightforward means for passing commands between
threads and/or processes in concurrent & networked software

Summary

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

98

• Broker provides a straightforward means for passing commands between
threads and/or processes in concurrent & networked software

• In contrast, implementations of Command Processor use messaging

Summary

Process Boundary

Android Services & Local IPC Douglas C. Schmidt

99

• Broker provides a straightforward means for passing commands between
threads and/or processes in concurrent & networked software

• In contrast, implementations of Command Processor use messaging

• Software architects must understand the trade-offs between these patterns

Summary

Command Processor & Broker are “pattern complements”

Process Boundary

	Slide Number 1
	Learning Objectives in this Part of the Module
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Summary
	Summary
	Summary
	Slide Number 20
	Learning Objectives in this Part of the Module
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Challenge: Simplifying Access to Remote Objects
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Evolving Patterns into Programming Languages
	Evolving Patterns into Programming Languages
	Evolving Patterns into Programming Languages
	Evolving Patterns into Programming Languages
	Evolving Patterns into Programming Languages
	Slide Number 53
	Learning Objectives in this Part of the Module
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Summary
	Summary
	Summary
	Slide Number 66
	Learning Objectives in this Part of the Module
	Challenge: Isolating Communication Concerns
	Challenge: Isolating Communication Concerns
	Challenge: Isolating Communication Concerns
	Challenge: Isolating Communication Concerns
	Use a Broker to Handle Communication Concerns
	Use a Broker to Handle Communication Concerns
	Use a Broker to Handle Communication Concerns
	Use a Broker to Handle Communication Concerns
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Broker	 POSA1 Architectural Pattern
	Summary
	Summary
	Summary

