
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of Programming Bound Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

2

Learning Objectives in this Part of the Module
• Understand how to program Bound Services

public class MyService extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder onBind(Intent intent) {...}

 public boolean onUnbind(Intent intent) {...}

 public int onStartCommand(Intent intent,
 int flags,
 int startId) {...}
 ...
}

Android Services & Local IPC Douglas C. Schmidt

3

Programming a Bound Service

developer.android.com/guide/components/bound-services.html

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html

Android Services & Local IPC Douglas C. Schmidt

4

Programming a Bound Service

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• These hook methods are

called back by Android to
initialize & terminate a
Service at the appropriate
time

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

Android Services & Local IPC Douglas C. Schmidt

5

Programming a Bound Service

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• Override the onBind() lifecycle

method
• Returns an Ibinder that defines

a communication channel
used for two-way interaction

developer.android.com/reference/android/app/Service.html
#onBind(android.content.Intent)

The object returned here is
typically initialized at the

class scope or in onCreate()

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

http://developer.android.com/reference/android/app/Service.htmlonBind(android.content.Intent)
http://developer.android.com/reference/android/app/Service.htmlonBind(android.content.Intent)

Android Services & Local IPC Douglas C. Schmidt

6 developer.android.com/reference/android/app/Service.html
#onUnbind(android.content.Intent)

Programming a Bound Service

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• Override the onBind() lifecycle

method
• Can also implement onUnbind()

• Called when all clients have
disconnected from a particular
interface published by the
Service by calling
unBindService()

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

http://developer.android.com/reference/android/app/Service.htmlonUnbind(android.content.Intent)
http://developer.android.com/reference/android/app/Service.htmlonUnbind(android.content.Intent)

Android Services & Local IPC Douglas C. Schmidt

7 developer.android.com/guide/components/bound-services.html#Lifecycle

Programming a Bound Service
• Implementing a Bound Service is

similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• Override the onBind() lifecycle

method
• Can also implement onUnbind()

• Called when all clients have
disconnected from a particular
interface published by the service

• Typically returns false, but can
return true to trigger reBind()

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

8

Programming a Bound Service

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• Override the onBind() lifecycle

method
• Can also implement onUnbind()
• onStartCommand() is typically not

implemented for a Bound Service
• Only do this if you want to

manage the lifecycle of the
Bound Service

developer.android.com/guide/components/bound-services.html#Lifecycle

public class MyService
 extends Service {
 ...
 public void onCreate() {...}

 protected void onDestroy() {...}

 public Ibinder
 onBind(Intent intent) {...}

 public boolean
 onUnbind(Intent intent) {...}

 public int onStartCommand
 (Intent intent,
 int flags,
 int startId) {...}
 ...
}

http://developer.android.com/guide/components/bound-services.html#Lifecycle

Android Services & Local IPC Douglas C. Schmidt

9

• Implementing a Bound Service is
similar to a Started Service, e.g.:
• Inherit from Android Service

class
• Override onCreate() &

onDestroy (optional)
• Override the onBind() lifecycle

method
• Can also implement onUnbind()
• onStartCommand() is typically not

implemented for a Bound Service
• Include the Service in the

AndroidManifest.xml config file

<application ... >
 <activity android:name=
 ".MyActivity"
 ...

 </activity>

 <service
 android:exported= "true"
 android:name=
 ".MyService“
 ...
 </service>

</application

www.vogella.com/articles/AndroidServices/article.html has more on Services

Programming a Bound Service

http://www.vogella.com/articles/AndroidServices/article.html

Android Services & Local IPC Douglas C. Schmidt

10

• Programming two-way communication with Bound
Services is straightforward
• The bulk of the implementations are handled by

Android & a client-side callback protocol

Summary

Android Services & Local IPC Douglas C. Schmidt

11

• Programming two-way communication with Bound
Services is straightforward

• One of the most important parts of implementing a
Bound Service is defining the interface that the
onBind() callback method returns
• Three common ways to implement the Service's

IBinder interface are discussed next
• Extent the Binder class
• Use a Messenger
• Use the Android Interface Definition

Language (AIDL)

Summary

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Local Bound Service Communication

by Extending the Binder Class

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

13

Learning Objectives in this Part of the Module
• Understand how to communicate with Local Bound Services by extending

the Binder class

onStart()
getRand()

ServiceConnection

Single Process

onServiceConnected()

Return reference
to object that
implements the
IBinder interface

Dispatch callback

A
ss

ig
n

 to
 d

at
a

m
em

be
r

Dispatch method
& return result

mBinder

mService LocalBinder
Call getRand()

getService()

bindService()

2

Start Bound
Service process
if it’s not already
running

4

Call getService()
5

6

Intent

1

onBind()
3

7

BindingActivity LocalService

8

See developer.android.com/guide/components/bound-services.html#Binder

http://developer.android.com/guide/components/bound-services.html#Binder

Android Services & Local IPC Douglas C. Schmidt

14

Communication via a Local Binder
• Sometimes a Bound Service is used only by a local client Activity & need not

work across processes
• In this “collocated” case, simply implement an instance of a Binder subclass

that provides the client direct access to public methods in a Service

onStart()
getRand()

Single Process

onServiceConnected() mBinder

mService
getService()

onBind()
ServiceConnection

LocalBinder

BindingActivity LocalService

Android Services & Local IPC Douglas C. Schmidt

15

onStart()
getRand()

ServiceConnection

Single Process

mBinder

mService LocalBinder

getService()

2

Start Bound
Service process
if it’s not already
running

Intent

onBind()

Communication via a Local Binder
The onBind() method can create a Binder object that either:
• Contains public methods the client can call
• Returns current Service instance, which has public methods the client can call, or
• Returns an instance of another class hosted by Service that the client can call

bindService()
1

BindingActivity LocalService

Android Services & Local IPC Douglas C. Schmidt

16

onStart()
getRand()

ServiceConnection

Single Process

onServiceConnected()

Return reference
to object that
implements the
IBinder interface

Dispatch callback
mBinder

mService LocalBinder

getService()

4

onBind()
3

Communication via a Local Binder
The LocalBinder “is a” Binder
public class LocalBinder extends Binder {
 ...
}

BindingActivity LocalService

Android Services & Local IPC Douglas C. Schmidt

17

onStart()
getRand()

ServiceConnection

Single Process

onServiceConnected()

Return reference
to object that
implements the
IBinder interface

A
ss

ig
n

 to
 d

at
a

m
em

be
r

Dispatch method
& return result

mBinder

mService LocalBinder

getService()

Call getService()
5

6

onBind()

7

Communication via a Local Binder

BindingActivity LocalService

The getService() factory method allows clients to call LocalService methods
public class LocalBinder extends Binder {
 LocalService getService() { return LocalService.this; }
}

Android Services & Local IPC Douglas C. Schmidt

18

onStart()

BindingActivity

getRand()

ServiceConnection

LocalService

Single Process

onServiceConnected() mBinder

mService LocalBinder
Call getRand()

getService()

onBind()

Communication via a Local Binder

 getRand() is a two-way method call that
returns a random number to the caller

8

Android Services & Local IPC Douglas C. Schmidt

19

Example of Service that Extends the Binder

public class LocalService extends Service {
 public class LocalBinder extends Binder
 { LocalService getService() { return LocalService.this; } }

 private final IBinder mBinder = new LocalBinder ();

 public IBinder onBind(Intent intent) { return mBinder; }

 private final Random mGenerator = new Random();

 public int getRand() { return mGenerator.nextInt(100); }
}

Return Service
instance to client

Called by Android when client invokes
bindService() to return Binder instance

Factory Method for clients

• Create a Binder object that returns the current Service instance, which has
public methods the client can call

Called by clients to generate
a random number

Android Services & Local IPC Douglas C. Schmidt

20

public class BindingActivity extends Activity {
 LocalService mService; boolean mBound = false;

 protected void onStart() {
 super.onStart();
 Intent intent = new Intent(this, LocalService.class);
 bindService(intent, mConn, Context.BIND_AUTO_CREATE);
 }

 protected void onStop() {
 super.onStop();
 if (mBound) { unbindService(mConn); mBound = false; }
 }

 public void onButtonClick(View v) {
 if (mBound) Toast.makeText(this, mService.getRand(),
 Toast.LENGTH_SHORT).show();
 }

Example of Client that Uses the Extended Binder

Object
state

Bind to LocalService

• The client receive the Binder from the onServiceConnected() callback method
& makes calls to the Bound Service using the provided methods

Unbind to LocalService

Calls Service’s method

Android Services & Local IPC Douglas C. Schmidt

21

public class BindingActivity extends Activity {
 ...

 private ServiceConnection mConn = new ServiceConnection() {

 public void onServiceConnected(ComponentName className,
 IBinder service) {
 LocalService.LocalBinder binder =
 (LocalService.LocalBinder)service;
 mService = binder.getService(); mBound = true;
 }

 public void onServiceDisconnected(ComponentName a)
 { mBound = false; }
 };
}

• The client receive the Binder from the onServiceConnected() callback method
& makes calls to the Bound Service using the provided methods

Defines Service binding callbacks, passed to bindService()

Cast the IBinder & get LocalService instance

Example of Client that Uses the Extended Binder

Called when Service is unexpectedly disconnected

Android Services & Local IPC Douglas C. Schmidt

22

Summary
• Using Local Binders is the preferred technique when a Service is merely a

background worker for an Activity
• The Service & the client must be in the same process because this

technique does not perform any (de)marshaling across processes

onStart()
getRand()

ServiceConnection

Single Process

onServiceConnected()

Return reference
to object that
implements the
IBinder interface

Dispatch callback

A
ss

ig
n

 to
 d

at
a

m
em

be
r

Dispatch method
& return result

mBinder

mService LocalBinder
Call getRand()

getService()

bindService()

2

Start Bound
Service process
if it’s not already
running

4

Call getService()
5

6

Intent

1

onBind()
3

7

BindingActivity LocalService

8

Android Services & Local IPC Douglas C. Schmidt

23

• Using Local Binders is the preferred technique when a Service is merely a
background worker for an Activity

• The only reason not to create a Bound Service this way is because the
Service is used by other Apps or across separate processes
• Note how the method is dispatched in the same thread as the caller

Summary

onStart()
getRand()

ServiceConnection

Single Process

onServiceConnected()

Return reference
to object that
implements the
IBinder interface

Dispatch callback

A
ss

ig
n

 to
 d

at
a

m
em

be
r

Dispatch method
& return result

mBinder

mService LocalBinder
Call getRand()

getService()

bindService()

2

Start Bound
Service process
if it’s not already
running

4

Call getService()
5

6

Intent

1

onBind()
3

7

BindingActivity LocalService

8

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Bound Service Communication

Via Messengers

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

25

Learning Objectives in this Part of the Module
• Understand how to communicate with Bound Services via Messengers

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

bindService()

mSvcMsg

Return
reference to
mMessenger

onBind()

Dispatch
handleMessage()

mMessenger

Dispatch callback

C
re

at
e

M
es

se
ng

er
 &

as

si
gn

 to
 d

at
a

m
em

be
r

Call send() to pass a
Message to Service

1

2

6

7

3

5

Start Bound Service
process if it’s not
already running

Intent

onStart()

4

developer.android.com/guide/components/bound-services.html#Messenger

http://developer.android.com/guide/components/bound-services.html#Messenger

Android Services & Local IPC Douglas C. Schmidt

26

Using a Messenger in a Bound Service
• A Messenger can be used to communicate with a Bound Service

• Enables interaction between an Activity & a Bound Service without using
AIDL (which is more powerful & complicated)

Generalizing to communicate between processes is relatively straightforward

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

mSvcMsg

onBind()

mMessenger

onStart()

Android Services & Local IPC Douglas C. Schmidt

27

Using a Messenger in a Bound Service

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

bindService()

mSvcMsg

onBind()

mMessenger

1

2

Start Bound Service
process if it’s not
already running

Intent

onStart()

Implement a Handler that receives a callback for each call
from a client & reference the Handler in a Messenger object

Android Services & Local IPC Douglas C. Schmidt

28

Using a Messenger in a Bound Service

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

mSvcMsg

Return
reference to
mMessenger

onBind()

mMessenger

Dispatch callback

C
re

at
e

M
es

se
ng

er
 &

as

si
gn

 to
 d

at
a

m
em

be
r

3

5

onStart()

4

Messenger creates IBinder that Service returns to clients from onBind()

public IBinder onBind(Intent intent)
{ return mMessenger.getBinder(); }

developer.android.com/reference/android/os/Messenger.html#getBinder()

http://developer.android.com/reference/android/os/Messenger.htmlgetBinder()

Android Services & Local IPC Douglas C. Schmidt

29

Using a Messenger in a Bound Service

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

mSvcMsg

onBind()

Dispatch
handleMessage()

mMessenger

Call send() to pass a
Message to Service

6

7

onStart()

This method can perform an action,
e.g., display the Message contents, do

some processing, send a reply, etc.

Android Services & Local IPC Douglas C. Schmidt

30

public class MessengerService extends Service {
 static final int MSG_PERFORM_ACTION = 1;

 class InHandler extends Handler {
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MSG_PERFORM_ACTION:
 processMessage(msg); break;
 default: super.handleMessage(msg);
 }
 }
 }

 final Messenger mMessenger = new Messenger(new InHandler());

 public IBinder onBind(Intent intent)
 { return mMessenger.getBinder(); }
}

Example Using a Messenger in a Bound Service

Instruct Service
to do some action

Handler for incoming
client Messages

Target for clients to send Messages to InHandler

Return Ibinder so clients can send Messages to Service

developer.android.com/reference/android/os/Messenger.html
#Messenger(android.os.Handler)

http://developer.android.com/reference/android/os/Messenger.htmlMessenger(android.os.IBinder)
http://developer.android.com/reference/android/os/Messenger.htmlMessenger(android.os.IBinder)

Android Services & Local IPC Douglas C. Schmidt

31

public class MessengerActivity extends Activity {
 ...
 Messenger mSvcMsg = null;

 boolean mBound;

 private ServiceConnection mConnection =
 new ServiceConnection() {

 public void onServiceConnected(ComponentName className,
 IBinder service) {
 mSvcMsg = new Messenger(service); mBound = true;
 }

 public void onServiceDisconnected(ComponentName className) {
 mSvcMsg = null; mBound = false;
 }
 };

Example Using a Messenger in an Activity

Means to communicate w/Service

Flag indicating if Service is bound

Called when connection with Service has been established,
giving the object to interact with the Service

Called when Service is unexpectedly disconnected

developer.android.com/reference/android/os/Messenger.html
#Messenger(android.os.IBinder)

http://developer.android.com/reference/android/os/Messenger.htmlMessenger(android.os.IBinder)
http://developer.android.com/reference/android/os/Messenger.htmlMessenger(android.os.IBinder)

Android Services & Local IPC Douglas C. Schmidt

32

public class MessengerActivity extends Activity {
 ...
 protected void onStart() {
 super.onStart();
 bindService(new Intent(this, MessengerService.class),
 mConnection, Context.BIND_AUTO_CREATE);
 }

 protected void onStop() {
 super.onStop();
 if (mBound) { unbindService(mConnection); mBound = false; }
 }

 public void onButtonClick(View v) {
 if (!mBound) return;
 Message msg = Message.obtain
 (null, MessengerService.MSG_PERFORM_ACTION, 0, 0);
 ...
 mSvcMsg.send(msg);
 }
 ...

Create & send a Message to Messenger
in Service, using a 'what' value

Example Using a Messenger in an Activity

 Bind to the service

 Unbind from the service

Android Services & Local IPC Douglas C. Schmidt

33

Using Messengers for Two-way Communication
• Two-way communication via Messengers in a Bound Service is a slight

variation on the approach described earlier
• It involves sending a replyMessenger with the original Message, which is

then used to call send() back on the client

We didn’t show the code for two-way communication in our example

Single Process

MessengerActivity MessengerService

InHandler

mSvcMsg

onBind()

Dispatch
handleMessage()

mMessenger 6

7

onStart()

Call send() to pass
Message to Service,
including another
Messenger for the
reply path

Dispatch reply
handleMessage()

ReplyHandler

8 handleMessage()

Android Services & Local IPC Douglas C. Schmidt

34

Summary
• If an Activity needs to communicate with a Bound Service a Messenger can

provide a message-passing interface for this Service
• This technique makes it easy to perform inter-process communication (IPC)

without the need to use AIDL

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

bindService()

mSvcMsg

Return
reference to
mMessenger

onBind()

Dispatch
handleMessage()

mMessenger

Dispatch callback

C
re

at
e

M
es

se
ng

er
 &

as

si
gn

 to
 d

at
a

m
em

be
r

Call send() to pass
Message to Service

1

2

6

7

3

5

Start Bound Service
process if it’s not
already running

Intent

onStart()

4

Some additional programming is required to use Messengers for IPC

Android Services & Local IPC Douglas C. Schmidt

35

Summary
• If an Activity needs to communicate with a Bound Service a Messenger can

provide a message-passing interface for this Service
• A Messenger queues the incoming send() calls, which allows the Service to

handle one call at a time without requiring thread-safe programming

Single Process

MessengerActivity

handleMessage()

ServiceConnection

MessengerService

InHandler

onServiceConnected()

bindService()

mSvcMsg

Return
reference to
mMessenger

onBind()

Dispatch
handleMessage()

mMessenger

Dispatch callback

C
re

at
e

M
es

se
ng

er
 &

as

si
gn

 to
 d

at
a

m
em

be
r

Call send() to pass
Message to Service

1

2

6

7

3

5

Start Bound Service
process if it’s not
already running

Intent

onStart()

4

If your Service must be multi-threaded then you’ll need AIDL (covered next)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Advanced Bound Service Communication

– Overview of the AIDL & Binder RPC

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

37

Learning Objectives in this Part of the Module
• Understand AIDL & Binder RPC mechanisms for communicating with Bound

Services
Binder IPC
Mechanism

DownloadActivity

downloadImage()

ServiceConnection

DownloadService

Process A Process B

ImageBinder

Return ref
to Binder
object

Dispatch callback A
ss

ig
n

P
ro

xy
 to

 d
at

a
m

em
be

r

Stub dispatches
method & returns
result

1

2

3

5

mBinder

onServiceConnected()

onBind()

mBoundService

onStart()

Start Bound Service
process if it’s not
already running

Intent

bindService()

initiateDownload()
downloadImage()

7

6

4

AIDL & Binder RPC are the most powerful Android local IPC mechanism

Android Services & Local IPC Douglas C. Schmidt

38

downloadImage()

ImageBinder

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• Our two previous examples of communicating with Bound Services side-

stepped this issue by collocating the Activity & the Service in the same
process address space

Client Process Server Process

DownloadActivity DownloadService

mBoundService

Android Services & Local IPC Douglas C. Schmidt

39

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• To communicate therefore they need to decompose their objects into

primitives that the operating system can understand & (de)marshal the
objects across the process boundary
• Marshaling converts data from native format into a linearized format

DownloadActivity DownloadService

1
downloadImage() mBoundService

ImageBinder

Client Process Server Process

en.wikipedia.org/wiki/Marshalling_(computer_science) has more info

http://en.wikipedia.org/wiki/Marshalling_(computer_science)

Android Services & Local IPC Douglas C. Schmidt

40

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• To communicate therefore they need to decompose their objects into

primitives that the operating system can understand & (de)marshal the
objects across the process boundary
• Marshaling converts data from native format into a linearized format
• Demarshaling converts data from the linearized format into native format

DownloadActivity DownloadService

2

downloadImage() mBoundService

ImageBinder

Client Process Server Process

en.wikipedia.org/wiki/Marshalling_(computer_science) has more info

http://en.wikipedia.org/wiki/Marshalling_(computer_science)

Android Services & Local IPC Douglas C. Schmidt

41

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• To communicate therefore they need to decompose their objects into

primitives that the operating system can understand & (de)marshal the
objects across the process boundary

• The code to (de)marshal is tedious to write, so Android automates it with the
Android Interface Definition Language (AIDL) & an associated compiler
• AIDL is similar to Java interfaces

downloadImage()

ImageBinder

DownloadActivity DownloadService

interface IDownload {
 String downloadImage
 (String uri);
}

Client Process Server Process

mBoundService

Android Services & Local IPC Douglas C. Schmidt

42

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• To communicate therefore they need to decompose their objects into

primitives that the operating system can understand & (de)marshal the
objects across the process boundary

• The code to (de)marshal is tedious to write, so Android automates it with the
Android Interface Definition Language (AIDL) & an associated compiler
• AIDL is similar to Java interfaces
• Compilation is handled automatically by Eclipse

downloadImage()

ImageBinder

DownloadActivity DownloadService

interface IDownload {
 String downloadImage
 (String uri);
}

developer.android.com/guide/components/aidl.html has AIDL overview

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy AIDL Compiler

http://developer.android.com/guide/components/aidl.html

Android Services & Local IPC Douglas C. Schmidt

43

Motivation for AIDL & Binder RPC
• One process on Android cannot normally access the address space of another

process
• To communicate therefore they need to decompose their objects into

primitives that the operating system can understand & (de)marshal the
objects across the process boundary

• The code to (de)marshal is tedious to write, so Android automates it with the
Android Interface Definition Language (AIDL) & an associated compiler

• The Android Binder provides a local RPC mechanism for cross-process calls
• Apps rarely access the Binder directly, but instead use AIDL Stubs & Proxies

DownloadActivity DownloadService

downloadImage()

ImageBinder

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism

elinux.org/Android_Binder has more info on Android Binder RPC

http://elinux.org/Android_Binder

Android Services & Local IPC Douglas C. Schmidt

44

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC

• It uses shared memory & per-process thread pool for high performance

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism
DownloadActivity DownloadService

downloadImage()

ImageBinder

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy

Android Services & Local IPC Douglas C. Schmidt

45

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism
DownloadActivity

Client Process

mBoundService

MyService.Stub.Proxy

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java

sites.google.com/site/io/anatomy--physiology-of-an-android has more info

downloadImage()

C/C++ code
NDKDownloadService

Server Process

NDKService::Stub

https://sites.google.com/site/io/anatomy--physiology-of-an-android

Android Services & Local IPC Douglas C. Schmidt

46

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism
DownloadActivity DownloadService

downloadImage()

ImageBinder

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy

Android Services & Local IPC Douglas C. Schmidt

47

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects
• Two-way method invocations are synchronous (block the caller)

• One-way method invocations do not block the caller

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism
DownloadActivity DownloadService

downloadImage()

ImageBinder

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy

Caller thread blocks waiting for results from the Service

Android Services & Local IPC Douglas C. Schmidt

48

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects
• Two-way method invocations are synchronous (block the caller)
• Android also supports asynchronous calls between processes

• Implemented using one-way methods & callback objects

1

Binder IPC Mechanism
DownloadActivity DownloadService

Client Process Server Process

Client passes callback object via oneway method to Service

setCallback()

ImageBinder
mBoundService

Call oneway method setCallback()

ReplyHandler

Android Services & Local IPC Douglas C. Schmidt

49

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects
• Two-way method invocations are synchronous (block the caller)
• Android also supports asynchronous calls between processes

• Implemented using one-way methods & callback objects

Binder IPC Mechanism
DownloadActivity DownloadService

Client Process Server Process

Caller thread doesn’t block waiting for results

ImageBinder

setCallback()
mBoundService

ReplyHandler

1 Call oneway method setCallback()

Android Services & Local IPC Douglas C. Schmidt

50

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects
• Two-way method invocations are synchronous (block the caller)
• Android also supports asynchronous calls between processes

• Implemented using one-way methods & callback objects

2

Binder IPC Mechanism
DownloadActivity DownloadService

Client Process Server Process

downloadCallback()

ImageBinder

Service invokes a one-way method to return results

Call oneway method sendPath()

mBoundService

ReplyHandler

sendPath()

Android Services & Local IPC Douglas C. Schmidt

51

Details of Android Binder & AIDL IPC
• The Binder Driver is installed in the Linux kernel to accelerate IPC
• Android (system) Services can be written in C/C++, as well as Java
• Caller’s data is marshaled into parcels, copied to callee’s process, &

demarshaled into what callee expects
• Two-way method invocations are synchronous (block the caller)
• Android also supports asynchronous calls between processes via callbacks
• Server typically handles one- & two-way method invocations in a thread pool

• Service objects & methods must therefore be thread-safe

Call method downloadImage()

Return results to caller

1

2

Binder IPC Mechanism
DownloadActivity DownloadService

downloadImage()

ImageBinder

MyService.Stub

Client Process Server Process

mBoundService

MyService.Stub.Proxy

Android Services & Local IPC Douglas C. Schmidt

52

Summary

www.vogella.com/tutorials.html

There are many Android tutorials & resources available online

• Android provides a wide range of local IPC mechanisms for communicating
with Bound Services

http://www.vogella.com/tutorials.html

Android Services & Local IPC Douglas C. Schmidt

53

Summary
• Android provides a wide range of local IPC mechanisms for communicating

with Bound Services
• AIDL is a language for defining Binder-based interfaces to Bound Services

• It’s used with the Binder RPC mechanism to implement the Broker pattern

See www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Process Boundary

Broker connects clients with remote objects by mediating
invocations from clients to remote objects, while

encapsulating the details of IPC or network communication

http://www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

54

Summary
• Android provides a wide range of local IPC mechanisms for communicating

with Bound Services
• AIDL is a language for defining Binder-based interfaces to Bound Services

• It’s used with the Binder RPC mechanism to implement the Broker pattern

• Many other patterns are used to implement AIDL & Binder RPC
• e.g., Proxy, Adapter, Activator, etc.

Process Boundary

	Slide Number 1
	Learning Objectives in this Part of the Module
	Programming a Bound Service
	Programming a Bound Service
	Programming a Bound Service
	Programming a Bound Service
	Programming a Bound Service
	Programming a Bound Service
	Programming a Bound Service
	Summary
	Summary
	Slide Number 12
	Learning Objectives in this Part of the Module
	Communication via a Local Binder
	Communication via a Local Binder
	Communication via a Local Binder
	Communication via a Local Binder
	Communication via a Local Binder
	Example of Service that Extends the Binder
	Example of Client that Uses the Extended Binder
	Example of Client that Uses the Extended Binder
	Summary
	Summary
	Slide Number 24
	Learning Objectives in this Part of the Module
	Using a Messenger in a Bound Service
	Using a Messenger in a Bound Service
	Using a Messenger in a Bound Service
	Using a Messenger in a Bound Service
	Example Using a Messenger in a Bound Service
	Example Using a Messenger in an Activity
	Example Using a Messenger in an Activity
	Using Messengers for Two-way Communication
	Summary
	Summary
	Slide Number 36
	Learning Objectives in this Part of the Module
	Motivation for AIDL & Binder RPC
	Motivation for AIDL & Binder RPC
	Motivation for AIDL & Binder RPC
	Motivation for AIDL & Binder RPC
	Motivation for AIDL & Binder RPC
	Motivation for AIDL & Binder RPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Details of Android Binder & AIDL IPC
	Summary
	Summary
	Summary

