
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Introduction

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

2

• Services don’t have a visual user interface & often run in the background in a
separate background thread or process

Introduction

downloadImage()

DownloadService

LocalBinder

Background Process

Android Services & Local IPC Douglas C. Schmidt

3

• Services don’t have a visual user interface & often run in the background in a
separate background thread or process
• Activities use Services to perform long-running operations or access remote

resources on behalf of users

Introduction

DownloadActivity

mBoundService

Main Process

downloadImage()

DownloadService

LocalBinder

Background Process

Android Services & Local IPC Douglas C. Schmidt

4

• Services don’t have a visual user interface & often run in the background in a
separate background thread or process

• Activities & Services interact via IPC mechanisms that are optimized for inter-
process communication within a mobile device
• e.g., the Android Interface Definition Language (AIDL) & Binder framework

Introduction

Binder IPC
Mechanism

1: Call method
downloadImage()

2: Return results
to caller

DownloadActivity

mBoundService downloadImage()

DownloadService

Background Process

LocalBinder

Main Process

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

6

Learning Objectives in this Part of the Module
• Understand what a Service is &

what different types of Services
Android supports

Android Services & Local IPC Douglas C. Schmidt

7

• A Service is an Android component that
can perform long-running operations in
the background
• e.g., a service might handle e-

commerce transactions, play music,
download a file, interact with a
content provider, run tasks
periodically, etc.

developer.android.com/guide/components/services.html has more info

Overview of a Service

Download Service

http://developer.android.com/guide/components/services.html

Android Services & Local IPC Douglas C. Schmidt

8

• A Service is an Android component that
can perform long-running operations in
the background

• Another Android component can start
a Service
• It will continue to run in the

background even if the user
switches to another app/activity

Overview of a Service

A Service does not provide direct
access to the user interface

Download Service

Download Activity

Android Services & Local IPC Douglas C. Schmidt

9

• A Service is an Android component that
can perform long-running operations in
the background

• Another Android component can start
a service

• There are two types of Services
• Started Service – Often performs a

single operation & might not return
a result to the caller directly

Overview of a Service

Download Service Download Service

Download Activity

Android Services & Local IPC Douglas C. Schmidt

10

Overview of a Service

Download Service

Download Activity

• A Service is an Android component that
can perform long-running operations in
the background

• Another Android component can start
a service

• There are two types of Services
• Started Service – Often performs a

single operation & might not return
a result to the caller directly

• Bound Service – Provides a client-
server interface that allows for a
conversation with the Service

Android Services & Local IPC Douglas C. Schmidt

11

• Implementing a Service is similar
to implementing an Activity
• e.g., inherit from Android Service

class, override lifecycle methods,
include Service in the config file
AndroidManifest.xml, etc.

Implementing a Service
public class Service extends
 ... {
 public void onCreate();
 public int onStartCommand
 (Intent intent,
 int flags, int startId);
 public abstract IBinder
 onBind(Intent intent);
 public boolean
 onUnbind(Intent intent);
 protected void onDestroy();
 ...
}

Android Services & Local IPC Douglas C. Schmidt

12

• Implementing a Service is similar
to implementing an Activity

• Android communicates state
changes to a Service by calling
its lifecycle hook methods

Implementing a Service

Android Services & Local IPC Douglas C. Schmidt

13

• Implementing a Service is similar
to implementing an Activity

• Android communicates state
changes to a Service by calling
its lifecycle hook methods

Implementing a Service

• Commonality: Provides
common interface for
performing long-running
operations that don’t interact
directly with the user interface

• Variability: Subclasses can
override lifecycle hook methods
to perform necessary
initialization for Started &
Bound Services

Android Services & Local IPC Douglas C. Schmidt

14

• Services lifecycle methods include
• onCreate() – called when Service

process is created, by any means

Service Lifecycle Hook Methods

Android Services & Local IPC Douglas C. Schmidt

15

• Services lifecycle methods include
• onCreate() – called when Service

process is created, by any means
• onStartCommand() – called each

time a Started Service is sent a
command via startService()

Service Lifecycle Hook Methods

Android Services & Local IPC Douglas C. Schmidt

16

• Services lifecycle methods include
• onCreate() – called when Service

process is created, by any means
• onStartCommand() – called each

time a Started Service is sent a
command via startService()

• onBind()/onUnbind – called when
a client binds/unbinds to a Bound
Service via bindService()/
unBindService()

Service Lifecycle Hook Methods

Android Services & Local IPC Douglas C. Schmidt

17

• Services lifecycle methods include
• onCreate() – called when Service

process is created, by any means
• onStartCommand() – called each

time a Started Service is sent a
command via startService()

• onBind()/onUnbind – called when
a client binds/unbinds to a Bound
Service via bindService()/
unBindService()

• onDestroy() – called as Service
is being shut down to cleanup
resources

Service Lifecycle Hook Methods

Android Services & Local IPC Douglas C. Schmidt

18

Configuring a Service into the Android System

<service android:name="com.android.music.MediaPlaybackService"
 android:exported="false"/>

Music Service

• You need to add a Service to your AndroidManifest.xml file
• Add a <service> element as a child of the <application> element &

provide android:name to reference your Service class

Services do not automatically run in their own processes or threads

MediaPlayback
Service Music Activity

Main Process

Android Services & Local IPC Douglas C. Schmidt

19

• You need to add a Service to your AndroidManifest.xml file
• Add a <service> element as a child of the <application> element &

provide android:name to reference your Service class
• Use android:process=":myProcess" to run the service in its own process

Configuring a Service into the Android System

<service android:name="com.android.music.MediaPlaybackService"
 android:exported="false"
 android:process=":myProcess"/>

Music Service

MediaPlayback
Service

Music Activity
Background Process

Main Process

developer.android.com/guide/topics/manifest/service-element.html#proc

http://developer.android.com/guide/topics/manifest/service-element.html#proc
http://developer.android.com/guide/topics/manifest/service-element.html#proc
http://developer.android.com/guide/topics/manifest/service-element.html#proc
http://developer.android.com/guide/topics/manifest/service-element.html#proc

Android Services & Local IPC Douglas C. Schmidt

20

Summary
• Apps can use Services to implement long-

running operations in the background
• Unless otherwise specified, a Service

runs in the same process/thread as
the app it is part of

Download Service

Main Process

Download Activity

Android Services & Local IPC Douglas C. Schmidt

21

Summary
• Apps can use Services to implement long-

running operations in the background
• Unless otherwise specified, a Service

runs in the same process/thread as
the app it is part of

• It keeps running until stopped by
itself, stopped by user, or killed by
the system if it needs memory

Download Service

Main Process

Download Activity

Android Services & Local IPC Douglas C. Schmidt

22

Summary
• Apps can use Services to implement long-

running operations in the background
• You can configure many properties of

Services via an AndroidManifest.xml file
 Download Service

Download Activity

Main Process

Background Process

developer.android.com/guide/topics/manifest/service-element.html has more

<service
 android:enabled=["true" | "false"]
 android:exported=["true" | "false"]
 android:icon="drawable resource"
 android:isolatedProcess=["true" | "false"]
 android:label="string resource"
 android:name="string"
 android:permission="string"
 android:process="string" >
 ...
</service>

http://developer.android.com/guide/topics/manifest/service-element.html
http://developer.android.com/guide/topics/manifest/service-element.html#enabled
http://developer.android.com/guide/topics/manifest/service-element.html#exported
http://developer.android.com/guide/topics/manifest/service-element.html#icon
http://developer.android.com/guide/topics/manifest/service-element.html#isolated
http://developer.android.com/guide/topics/manifest/service-element.html#label
http://developer.android.com/guide/topics/manifest/service-element.html#nm
http://developer.android.com/guide/topics/manifest/service-element.html#prmsn
http://developer.android.com/guide/topics/manifest/service-element.html#proc

Android Services & Local IPC Douglas C. Schmidt

23

Summary
• Apps can use Services to implement long-

running operations in the background
• You can configure many properties of

Services via an AndroidManifest.xml file
• Android calls back on hook methods to

control Service processing

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of Communicating with Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

25

Learning Objectives in this Part of the Module
• Understand various local IPC mechanisms that Activities & Services use to

communicate

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

26

Learning Objectives in this Part of the Module
• Understand various local IPC mechanisms that Activities & Services use to

communicate

• Recognize the common patterns used to implement communication with
Services

Android Services & Local IPC Douglas C. Schmidt

27

Communicating to Services

• Activities have two general ways to communicate with a Service
• Send a command via startService()

• You can add “extras” to the Intent used to start a Service

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

28

Communicating to Services

• Activities have two general ways to communicate with a Service
• Send a command via startService()
• Bind to a Service via BindService() & then use the Binder RPC mechanism

• The Binder supports an object-oriented client/server model defined via
the Android Interface Definition Language (AIDL) or Messengers

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

29

Communicating to Services

• Activities have two general ways to communicate with a Service
• Send a command via startService()
• Bind to a Service via BindService() & then use the Binder RPC mechanism

• The Binder supports an object-oriented client/server model defined via
the Android Interface Definition Language (AIDL) or Messengers

• Inter- or intra-process semantics selected by AndroidManifest.xml settings

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

30

Communicating from Services

• Services have multiple ways to communicate back to an invoking Activity
• Use a Messenger object

• This object can send messages to an Activity’s Handler

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

31

Communicating from Services

• Services have multiple ways to communicate back to an invoking Activity
• Use a Messenger object
• Use Broadcast Intents

• This requires having the Activity register a BroadcastReceiver

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

32

Communicating from Services

• Services have multiple ways to communicate back to an invoking Activity
• Use a Messenger object
• Use Broadcast Intents
• Use a Pending Intent

• Using a PendingIntent to trigger a call to Activity’s onActivityResult()
method

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

33

Communicating from Services

• Services have multiple ways to communicate back to an invoking Activity
• Use a Messenger object
• Use Broadcast Intents
• Use a Pending Intent
• Use an AIDL-based callback object

• Invoke callback on an AIDL-based object passed to Service via the Binder

DownloadActivity

Main Process

DownloadService

Background Process

Android Services & Local IPC Douglas C. Schmidt

34 www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

Common Service Communication Patterns
• Several patterns are used to implement communication with Services

• Activator – Automate
the scalable on-demand
activation & deactivation
of service execution
contexts to run services
accessed by many
clients without
consuming resources
unnecessarily

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

35

Common Service Communication Patterns
• Services implement several patterns

• Activator
• Command Processor – Encapsulate

the request for a service as a command
object

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

Client

3

2
Queue request

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

36

Common Service Communication Patterns
• Services implement several patterns

• Activator
• Command Processor
• Proxy – Provide a surrogate or placeholder

for another object to control access to it

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

37

Common Service Communication Patterns
• Services implement several patterns

• Activator
• Command Processor
• Proxy – Provide a surrogate or placeholder

for another object to control access to it

See en.wikipedia.org/wiki/Proxy_pattern for more on Proxy pattern

http://en.wikipedia.org/wiki/Proxy_pattern

Android Services & Local IPC Douglas C. Schmidt

38

Object
Adapter

Common Service Communication Patterns
• Services implement several patterns

• Activator
• Command Processor
• Proxy
• Broker – Connect clients with remote objects by

mediating invocations from clients to remote objects,
while encapsulating the details of IPC or network communication

See www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

http://www.kircher-schwanninger.de/michael/publications/BrokerRevisited.pdf

Android Services & Local IPC Douglas C. Schmidt

39

Summary
• There are multiple mechanisms for Activities to communicate with Services

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of Started Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

41

Learning Objectives in this Part of the Module
• Understand how what a Started

Service is & what hook methods it
defines to manage its various
lifecycle states

We’ll emphasize commonalities
& variabilities in our discussion

Android Services & Local IPC Douglas C. Schmidt

42

Overview of Started Services
• A Started Service is one that a client component starts

by calling startService()
• The Intent identifies the Service to communicate with

& supplies parameters (via Intent extras) to tell the
Service what to do

 Intent intent = new Intent
 (this,
 ThreadedDownloadService.class));
intent.putExtra("URL", imageUrl);
startService(intent);

This call doesn’t block

Download
Service

Download
Activity

developer.android.com/guide/components/services.html#CreatingStartedService

http://developer.android.com/guide/components/services.html#CreatingStartedService

Android Services & Local IPC Douglas C. Schmidt

43

Overview of Started Services
• A Started Service is one that a client component starts

by calling startService()
• This results in a call to the Service’s onCreate() &

onStartCommand() hook methods
• If the Service is not already running it will be started

& will receive the Intent via onStartCommand()

public class DownloadService extends Service {
 int onStartCommand(Intent intent,
 int flags, int startId)
 { ... }

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

44

Overview of Started Services
• A Started Service is one that a client component starts

by calling startService()
• This results in a call to the Service’s onCreate() &

onStartCommand() hook methods
• If the Service is not already running it will be started

& will receive the Intent via onStartCommand()
• This return a result to Android, but not to client

public class DownloadService extends Service {
 int onStartCommand(Intent intent,
 int flags, int startId)
 { return ...; }

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

45

Overview of Started Services
• A Started Service is one that a client component starts

by calling startService()
• This results in a call to the Service’s onCreate() &

onStartCommand() hook methods
• If the Service is not already running it will be started

& will receive the Intent via onStartCommand()
• This return a result to Android, but not to client

public class DownloadService extends Service {
 int onStartCommand(Intent intent,
 int flags, int startId)
 { return ...; }

Download
Service

Download
Activity

android-developers.blogspot.com.au/2010/02/service-api-changes-starting-with.html

Return value tells Android what it should do with the service if its process is killed
while it is running
• START_STICKY – Don’t redeliver Intent to onStartCommand() (pass null intent)
• START_NOT_STICKY – Service should remain stopped until/unless explicitly started

by some client code
• START_REDELIVER_INTENT – Restart Service via onStartCommand(), supplying the

same Intent as was delivered this time

http://android-developers.blogspot.com.au/2010/02/service-api-changes-starting-with.html

Android Services & Local IPC Douglas C. Schmidt

46

• A Started Service is one that another component starts
by calling startService()

• This results in a call to the Service’s onCreate() &
onStartCommand() hook methods

• A started service often performs a single operation &
might not return a result to the caller
• e.g., it could download or upload a file over TCP

Overview of Started Services

public class DownloadService ...
 String downloadFile (Uri uri) {
 InputStream in = (InputStream)
 new URL(uri.toString()).getContent();
 ...

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

47

• A Started Service is one that another component starts
by calling startService()

• This results in a call to the Service’s onCreate() &
onStartCommand() hook methods

• A started service often performs a single operation &
might not return a result to the caller

• When the operation is done, the service can be stopped

Overview of Started Services

A service can stop itself when it’s done by
calling stopSelf() or another component

can stop it by calling stopService()

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

48

• A Started Service is one that another component starts
by calling startService()

• This results in a call to the Service’s onCreate() &
onStartCommand() hook methods

• A started service often performs a single operation &
might not return a result to the caller

• When the operation is done, the service can be stopped
• Examples of Android Started Services

• SMS & MMS Services
• Manage messaging operations, such as sending

data, text, & pdu messages
• AlertService

• Handle calendar event reminders

Overview of Started Services

See packages/apps in Android source code for many services

Android Services & Local IPC Douglas C. Schmidt

49

Summary
• When a Started Service is launched,

it has a lifecycle that's independent
of the component that started it

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

50

Summary
• When a Started Service is launched,

it has a lifecycle that's independent
of the component that started it
• The service can run in the

background indefinitely, even if
the component that started it is
destroyed

Download
Service

Download
Activity

Android Services & Local IPC Douglas C. Schmidt

51

Summary
• When a Started Service is launched,

it has a lifecycle that's independent
of the component that started it

• Android’s Started Services support
inversion of control

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Programming Started Services

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

53

Learning Objectives in this Part of the Module
• Understand how to program Started Services

Android Services & Local IPC Douglas C. Schmidt

54

• Implementing a Started Service is
similar to implementing an Activity,
e.g.:
• Inherit from Android Service

class

Programming a Started Service
public class MusicService
 extends Service {
 public void onCreate() {
 ...
 }
 public int onStartCommand
 (Intent intent,
 int flags, int startId) {
 ...
 }
 protected void onDestroy() {
 ...
 }
 public IBinder
 onBind(Intent intent) {
 return null;
 }
...
}

Android Services & Local IPC Douglas C. Schmidt

55

• Implementing a Started Service is
similar to implementing an Activity,
e.g.:
• Inherit from Android Service

class
• Override lifecycle methods

Programming a Started Service
public class MusicService
 extends Service {
 public void onCreate() {
 ...
 }
 public int onStartCommand
 (Intent intent,
 int flags, int startId) {
 ...
 }
 protected void onDestroy() {
 ...
 }
 public IBinder
 onBind(Intent intent) {
 return null;
 }
...
}

May need to implement
the concurrency model in

onStartCommand()

Android Services & Local IPC Douglas C. Schmidt

56

• Implementing a Started Service is
similar to implementing an Activity,
e.g.:
• Inherit from Android Service

class
• Override lifecycle methods

• The onBind() method &
onUnbind() aren’t used for
Started Services

Programming a Started Service
public class MusicService
 extends Service {
 public void onCreate() {
 ...
 }
 public int onStartCommand
 (Intent intent,
 int flags, int startId) {
 ...
 }
 protected void onDestroy() {
 ...
 }
 public IBinder
 onBind(Intent intent) {
 return null;
 }
...
}

Started Services need to provide a
no-op implementation for onBind()

Android Services & Local IPC Douglas C. Schmidt

57

• Implementing a Started Service is
similar to implementing an Activity,
e.g.:
• Inherit from Android Service

class
• Override lifecycle methods
• Include the Service in the

AndroidManifest.xml config file

Programming a Started Service
<application ... >
 <activity android:name=
 ".MusicActivity"
 ...

 </activity>

 <service
 android:exported="false"
 android:name=
 ".BGLoggingService“
 ...
 </service>

</application

www.vogella.com/articles/AndroidServices/article.html has more on Services

http://www.vogella.com/articles/AndroidServices/article.html

Android Services & Local IPC Douglas C. Schmidt

58

Music Player App Overview
• MusicActivity can play music via a

Started Service

Android Services & Local IPC Douglas C. Schmidt

59

Music Player App Overview
• MusicActivity can play music via a

Started Service
• To start the Service a user needs

to push the “Play” button

Android Services & Local IPC Douglas C. Schmidt

60

Music Player App Overview
• MusicActivity can play music via a

Started Service
• To start the Service a user needs

to push the “Play” button
• If music is playing when MusicActivity

leaves the foreground, the Music
Service will continue playing

Android Services & Local IPC Douglas C. Schmidt

61

Music Player App Overview
• MusicActivity can play music via a

Started Service
• To start the Service a user needs

to push the “Play” button
• If music is playing when MusicActivity

leaves the foreground, the Music
Service will continue playing

• To stop the Service a user needs to
explicitly push the “Stop” button

Android Services & Local IPC Douglas C. Schmidt

62

send
intent

1

Music Player App Interactions
• MusicActivity send an Intent

via a call to startService()
• This Intent indicates which

song to play
Music

Activity

Intent

startService()

Android Services & Local IPC Douglas C. Schmidt

63

1
send
intent

Music Player App Interactions
• MusicActivity send an Intent

via a call to startService()
• The MusicService is

started on-demand
• Based on the Activator

pattern

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

Intent

 onCreate()

 onStartCommand()

Music
Service

startService()

Music
Activity

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

64

1

Music Player App Interactions
• MusicActivity send an Intent

via a call to startService()
• The MusicService is

started on-demand
• The onStartCommand() starts

playing the song requested by
the MusicActivity

Intent

 onCreate()

 onStartCommand()

Music
Service

send
intent startService()

Music
Activity

Android Services & Local IPC Douglas C. Schmidt

65

public class MusicActivity extends Activity {
 ...
 public void play (View src) {
 Intent intent = new Intent(MusicActivity.this,
 MusicService.class);

 intent.putExtra("SongID", R.raw.braincandy);

 startService(intent);
 }

 public void stop (View src) {
 Intent intent = new Intent(MusicActivity.this,
 MusicService.class);

 stopService (intent);
 }
}

Music Player Activity Implementation

Add the song to play as an “extra”

Launch the Started Service that handles this Intent

Stop the Started Service

Clearly, a production music play app wouldn’t hard-code the song selection!!

Android Services & Local IPC Douglas C. Schmidt

66

public class MusicService extends Service {
 MediaPlayer player;

 public int onStartCommand (Intent intent,
 int flags, int startid) {

 player = MediaPlayer.create(this,
 intent.getIntExtra("SongID",
 0));
 player.setLooping(true);

 player.start();

 return START_NOT_STICKY;
 }

 public void onDestroy() { player.stop(); }
}

Music Player Service Implementation

developer.android.com/reference/android/media/MediaPlayer.html has more

Inherit from Service class

Extract the resid from the
“extra” & create a MediaPlayer

Don’t restart Service
if it shuts down

Start playing the
song (doesn’t block)

Stop player
when Service
is destroyed

http://developer.android.com/reference/android/media/MediaPlayer.html

Android Services & Local IPC Douglas C. Schmidt

67

<application ... >

 <activity android:name=".MusicActivity"
 android:label="@string/app_name">

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />

 </intent-filter>
 </activity>

 <service android:exported="true"
 android:name=".MusicService" />

</application>

AndroidManifest.xml File

Service is usable by components
external to this application

developer.android.com/guide/topics/manifest/service-element.html#exported

http://developer.android.com/guide/topics/manifest/service-element.html#exported

Android Services & Local IPC Douglas C. Schmidt

68

Analysis of the Music Player Service Example
• This is a very simple example of a

Started Service, e.g.,
• It runs in the UI Thread, but

doesn’t block due to the
behavior of MusicPlayer.start()

MusicService
Lo

op
er

 Message

Message

Message

Message

Message

Message
Queue

UI Thread
(main thread)

Message
2. onStartCommand()

MusicActivity

1. startService()

Android Services & Local IPC Douglas C. Schmidt

69

Analysis of the Music Player Service Example
• This is a very simple example of a

Started Service, e.g.,
• It runs in the UI Thread, but

doesn’t block due to the
behavior of MusicPlayer.start()

• There’s no communication from
the Service back to the Activity
that invoked it!

MusicService
Lo

op
er

 Message

Message

Message

Message

Message

Message
Queue

UI Thread
(main thread)

Message
2. onStartCommand()

MusicActivity

1. startService()

Android Services & Local IPC Douglas C. Schmidt

70

Analysis of the Music Player Service Example
• This is a very simple example of a

Started Service
• Services with long-running

operations typically need to
run in separate Thread(s)

Download Service

Lo
op

er
 Message

Message

Message

Message

Message

Message
Queue

UI Thread
(main thread)

Message
2. onStartCommand()

Download
Activity

1. startService()

3. onHandleIntent()

Android Services & Local IPC Douglas C. Schmidt

71

• DownloadActivity requests a DownloadService to get a file from a server

Download App Overview

Download
Service

Download
Activity

startService()

Android Services & Local IPC Douglas C. Schmidt

72

• DownloadActivity requests a DownloadService to get an image from a server
• The DownloadService downloads the image & stores it in a file on the device

Download App Overview

Download
Service

Download
Activity

Socket

Socket

Send HTTP
GET request

Android Services & Local IPC Douglas C. Schmidt

73

• DownloadActivity requests a DownloadService to get an image from a server
• The DownloadService downloads the image & stores it in a file on the device
• The DownloadService returns the pathname of the file back to the

DownloadActivity, which then displays the image

Download App Overview

Download
Service

Download
Activity

Send reply

Android Services & Local IPC Douglas C. Schmidt

74

1
send
intent

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
Download

Activity

Intent

startService()

Android Services & Local IPC Douglas C. Schmidt

75

1
send
intent

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• Based on the Activator pattern

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

Intent

 onCreate()

 onStartCommand()

Download
Service

startService()

Download
Activity 2

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

76

1

The ServiceHandler is a common idiom in multi-threaded Android Services

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• The DownloadService does

several things
• Creates a ServiceHandler

• Internally creates a
single worker thread

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent startService()

Download
Activity

Service
Handler

sendMessage()

downloadImage()

handleMessage()

Create a
worker

thread &
Handler

3

2

Android Services & Local IPC Douglas C. Schmidt

77

1

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• The DownloadService does

several things
• Creates a ServiceHandler
• Receives & queues Intents

in the ServiceHandler

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent startService()

Download
Activity

Service
Handler

4

sendMessage()

downloadImage()

handleMessage()

3

2

Android Services & Local IPC Douglas C. Schmidt

78

1

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• The DownloadService does

several things
• Creates a ServiceHandler
• Receives & queues Intents

in the ServiceHandler
• The ServiceHandler dequeues

& processes the Intent “in the
background” to download
the designated image

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent startService()

Download
Activity

Service
Handler

Dequeue
Intent

& get file

4

5

sendMessage()

downloadImage()

handleMessage()

3

2

Later we’ll show how the DownloadService passes the file back to the Activity

Android Services & Local IPC Douglas C. Schmidt

79

1

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• The DownloadService does

several things
• Creates a ServiceHandler
• Receives & queues Intents

in the ServiceHandler
• Stops the Service when

there’s no more Intents to
handle

Intent

 onCreate()

Download
Service

send
intent startService()

Download
Activity

Service
Handler

Dequeue
Intent

& get file

4

5

sendMessage()

downloadImage()

handleMessage()

3

Android Services & Local IPC Douglas C. Schmidt

80

1

Download App Interactions
• DownloadActivity sends an Intent

via a call to startService()
• The DownloadService is

started on-demand
• The DownloadService does

several things
• This implementation of the

Command Processor pattern
offloads tasks from an app’s main
thread to a single worker thread

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent startService()

Download
Activity

Service
Handler

Dequeue
Intent

& get file

4

5

sendMessage()

downloadImage()

handleMessage()

3

2

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

81

Download Activity Implementation
public class DownloadActivity extends Activity {
 ...

 public void onClick(View v) {
 Intent intent = new Intent(DownloadActivity.this,
 DownloadService.class);
 ...

 intent.setData(Uri.parse(editText.getText().toString()));

 startService(intent);
 }
 ...
 Handler downloadHandler = new Handler() {
 public void handleMessage(Message msg) { /* ... */ }

 };
}

Add the URI to the download as data

Launch the Started Service
that handles this Intent

Code for processing the downloaded file shown later

Some initialization code intentionally omitted

Create Intent associated with DownloadService

Android Services & Local IPC Douglas C. Schmidt

82

Download Service Implementation
public class DownloadService extends Service {
 private volatile Looper mServiceLooper;
 private volatile ServiceHandler mServiceHandler;

 public void onCreate() {
 super.onCreate();

 HandlerThread thread = new HandlerThread("DownloadService");
 thread.start();

 mServiceLooper = thread.getLooper();
 mServiceHandler = new ServiceHandler(mServiceLooper);
 }

Create/start a separate Thread since the Service normally
runs in the process's UI Thread, which we don't want to block

Get the HandlerThread's Looper & use it for our Handler

Android Services & Local IPC Douglas C. Schmidt

83

Download Service Implementation
public class DownloadService extends Service {
 ...

 private final class ServiceHandler extends Handler {
 public ServiceHandler(Looper looper) { super(looper); }

 public void handleMessage(Message msg) {
 downloadImage((Intent) msg.obj);

 stopSelf(msg.arg1);
 }

 public void downloadImage(Intent intent) { /* ... */ }
 }
 ...

Handler that receives messages from the thread

Stop the service using the startId, so that we don't stop
the service in the middle of handling another job

Dispatch a callback hook
method to download a file

Download the image & notify the client

developer.android.com/guide/components/services.html#Stopping has more

http://developer.android.com/guide/components/services.html#Stopping

Android Services & Local IPC Douglas C. Schmidt

84

Download Service Implementation
public class DownloadService extends Service {
 ...
 public int onStartCommand(Intent intent, int f, int startId) {

 Message msg = mServiceHandler.obtainMessage();
 msg.arg1 = startId;

 msg.obj = intent;
 mServiceHandler.sendMessage(msg);
 return START_NOT_STICKY;
 }

 public void onDestroy() {
 mServiceLooper.quit();
 }
}

For each Intent, create/send a
message to start a download

Shutdown the looper

It’s instructive to consider how to extend this example to run in a thread pool

Include start ID in the message to know which request is
being stopped when the download completes

Android Services & Local IPC Douglas C. Schmidt

85

Analysis of the Download Service Example
• The worker thread solution

shown here is a common
Android Service idiom that
implements the Command
Processor pattern

Client

3

2
Queue request

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

86

Analysis of the Download Service Example
• The worker thread solution

shown here is a common
Android Service idiom that
implements the Command
Processor pattern

• This pattern is a good option
if you don't require that your
service handle multiple
requests simultaneously

Client

3

2
Queue request

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

87

• Programming Started Services is relatively straightforward
• e.g., inherit from Service

& override various hook
methods

Summary

Android Services & Local IPC Douglas C. Schmidt

88

• Programming Started Services is relatively straightforward
• The Service class uses the app’s

UI Thread by default
• A multi-threaded service should

therefore often extend
Service directly & spawn
one or more threads

Summary

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent

startService()

Download
Activity

Service
Handler

Dequeue
Intent

& get file

4

5

sendMessage()

downloadImage()

handleMessage()

3

2 1

Android Services & Local IPC Douglas C. Schmidt

89

• Programming Started Services is relatively straightforward
• The Service class uses the app’s

UI Thread by default
• A Service is not a Thread

• It doesn’t automatically do
work off the UI Thread &
avoid “Application Not
Responding” errors)

Summary

Android Services & Local IPC Douglas C. Schmidt

90

Intent

 onCreate()

 onStartCommand()

Download
Service

send
intent

startService()

Service
Handler

dequeue Intent
& download file

4

5

sendMessage()

downloadImage()

handleMessage()

3

2 1
Download

Activity

Summary
• Programming Started Services is relatively straightforward
• The Service class uses the app’s

UI Thread by default
• A Service is not a Thread

• It doesn’t automatically do
work off the UI Thread &
avoid “Application Not
Responding” errors)

• A Service with compute-
or I/O-intensive tasks should
run it’s work in a background
thread or process

Android Services & Local IPC Douglas C. Schmidt

91

onHandleIntent()

…

process intent

MyIntent
Service

3

queue
intent

dequeue
intent

Service
Handler

 sendMessage()

 onCreate()

 onStartCommand()

2

Intent Intent
Service

send
intent

startService()

 handleMessage()

4 5

1
Client

Activity

• Programming Started Services is relatively straightforward
• The Service class uses the app’s

UI Thread by default
• A Service is not a Thread

• It doesn’t automatically do
work off the UI Thread &
avoid “Application Not
Responding” errors)

• A Service with compute-
or I/O-intensive tasks should
run it’s work in a background
thread or process

• The Android IntentService
class automates this type
of behavior via Command
Processor pattern

Summary

developer.android.com/reference/android/app/IntentService.html has more

http://developer.android.com/reference/android/app/IntentService.html

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Overview of IntentService Framework

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

93

Overview of IntentService
• The most common Service subclass is IntentService

developer.android.com/reference/android/app/IntentService.html has more

public class IntentService extends Service {
 public int onStartCommand(Intent intent,
 int flags,
 int startId) {
 ...
 }

 protected abstract void onHandleIntent(Intent intent);
}

This hook method must be implemented by
subclasses to handle an Intent in a worker thread

http://developer.android.com/reference/android/app/IntentService.html

Android Services & Local IPC Douglas C. Schmidt

94

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• Clients can pass data &

objects to the Service by
putting “extras” into the
Intents

1 Client
send
intent

startService()

Overview of IntentService

www.itcuties.com/android/intent-putextra has more info on extras

Intent

http://www.itcuties.com/android/intent-putextra

Android Services & Local IPC Douglas C. Schmidt

95

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• Clients can pass data &

objects to the Service by
putting “extras” into the
Intents

• The IntentService is started
on-demand via the Activator
pattern

Client

Intent
Service

 onCreate()

 onStartCommand()

www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf has more info

send
intent

startService()

Overview of IntentService

Intent

http://www.dre.vanderbilt.edu/~schmidt/PDF/Activator.pdf

Android Services & Local IPC Douglas C. Schmidt

96

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()
• This hook method processes

the Intent sent by the client

Client

Intent
Service

 onCreate()

 onStartCommand()

MyIntent
Service

onHandleIntent()

…

send
intent

startService()

Overview of IntentService

Intent

developer.android.com/guide/components/services.html#ExtendingIntentService

http://developer.android.com/guide/components/services.html#ExtendingIntentService

Android Services & Local IPC Douglas C. Schmidt

97

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()

• The IntentService does
several things
• Creates a ServiceHandler

• Internally creates a
single worker thread

Client

Intent
Service

 onCreate()

 onStartCommand()

2

…

3

send
intent

queue intent

dequeue
intent process intent

4

startService()

Overview of IntentService

MyIntent
Service

onHandleIntent()

Service
Handler

 sendMessage()

 handleMessage()

The ServiceHandler is a common idiom in multi-threaded Android Services

Intent

Android Services & Local IPC Douglas C. Schmidt

98

1

 onStartCommand()

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()

• The IntentService does
several things
• Creates a ServiceHandler
• Receives & queues

Intents in ServiceHandler
• Processes the queue of

Intents “in the background”

Client

Intent
Service

send
intent

startService()

Overview of IntentService

 onCreate()

…

process intent

4 onHandleIntent()

MyIntent
Service

2

3

queue intent

dequeue
intent

Service
Handler

 sendMessage()

 handleMessage()

Intent

Android Services & Local IPC Douglas C. Schmidt

99

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()

• The IntentService does
several things
• Creates a ServiceHandler
• Receives & queues

Intents in ServiceHandler
• Stops the Service when

there are no more Intents
to handle

Client

Intent
Service

 onCreate()

 onStartCommand()

…

send
intent

process intent

4

startService()

Overview of IntentService

MyIntent
Service

onHandleIntent()

2

3

queue intent

dequeue
intent

Service
Handler

 sendMessage()

 handleMessage()

Intent

Android Services & Local IPC Douglas C. Schmidt

100

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()

• The IntentService does
several things

• All Intents are handled in
the ServiceHandler’s worker
thread
• They may take as long as

necessary (& will not block
the app's UI Thread loop)

Client

Intent
Service

 onCreate()

 onStartCommand()

…

process intent

4

send
intent

startService()

Overview of IntentService

MyIntent
Service

2

3

queue intent

dequeue
intent

Service
Handler

 sendMessage()

 handleMessage()

onHandleIntent()

Intent

Android Services & Local IPC Douglas C. Schmidt

101

1

• The most common Service subclass is IntentService
• Clients send Intents via calls

to startService()
• A subclass of IntentService

implements the hook
method onHandleIntent()

• The IntentService does
several things

• All Intents are handled in
the ServiceHandler’s worker
thread
• They may take as long as

necessary (& will not block
the app's UI Thread loop)

• However, only one Intent will be processed at a time

Client

Intent
Service

 onCreate()
send
intent onStartCommand()

startService()

onHandleIntent()

…

process intent

4

Overview of IntentService

MyIntent
Service

2

3

queue intent

dequeue
intent

Service
Handler

 sendMessage()

 handleMessage()

Intent

Android Services & Local IPC Douglas C. Schmidt

102

Summary
• The IntentService is used to perform

a certain task in the background
• The IntentService framework

implements the Command
Processor pattern

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

Client

3

2
Queue request

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

103

Summary
• The IntentService is used to perform

a certain task in the background
• IntentService automatically stops

itself when there are no more
intents in its queue
• Conversely, a regular Service

needs to stop itself manually via
stopSelf() or stopService()

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Programming the IntentService Framework

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

105

Learning Objectives in this Part of the Module
• Understand how to program the

IntentService framework

Android Services & Local IPC Douglas C. Schmidt

106

Logging App Overview
• The Logging Service extends the IntentService to

offload logging operations from an app’s UI Thread

public class LoggingService
 extends IntentService {
 protected abstract void onHandleIntent
 (Intent intent);
}

Android Services & Local IPC Douglas C. Schmidt

107

• The Logging Service extends the IntentService to
offload logging operations from an app’s UI Thread

• Clients send commands (expressed as Intents) via
calls to startService()

Intent intent = new Intent
 (this, LoggingService.class));
intent.putExtra("LogMsg", "hello world");
startService(intent);

Download
Activity

Logging App Overview

Android Services & Local IPC Douglas C. Schmidt

108

• The Logging Service extends the IntentService to
offload logging operations from an app’s UI Thread

• Clients send commands (expressed as Intents) via
calls to startService()

• The LoggingService subclass handle intents
in a worker thread asynchronously

Download
Service

Download
Activity

public class LoggingService extends
 IntentService {
 void onHandleIntent(Intent intent)
 { ... }
}

Logging App Overview

Android Services & Local IPC Douglas C. Schmidt

109

• The Logging Service extends the IntentService to
offload logging operations from an app’s UI Thread

• Clients send commands (expressed as Intents) via
calls to startService()

• The LoggingService subclass handle intents
in a worker thread asynchronously

Download
Service

Download
Activity

Logging App Overview

public class LoggingService extends
 IntentService {
 void onHandleIntent(Intent intent)
 { ... }
} Handler

Android starts the Service as needed,
which internally spawns a worker

thread that handles a queue of intents

Android Services & Local IPC Douglas C. Schmidt

110

Download
Service

Download
Activity

The IntentService calls this hook method
from the worker thread to handle each

intent that started the Service

Logging App Overview
• The Logging Service extends the IntentService to

offload logging operations from an app’s UI Thread
• Clients send commands (expressed as Intents) via

calls to startService()
• The LoggingService subclass handle intents

in a worker thread asynchronously

public class LoggingService extends
 IntentService {
 void onHandleIntent(Intent intent)
 { ... }
} Handler

Android Services & Local IPC Douglas C. Schmidt

111

Download
Service

Download
Activity

When there are no more intents to handle
the IntentService stops itself automatically

Logging App Overview
• The Logging Service extends the IntentService to

offload logging operations from an app’s UI Thread
• Clients send commands (expressed as Intents) via

calls to startService()
• The LoggingService subclass handle intents

in a worker thread asynchronously

public class LoggingService extends
 IntentService {
 void onHandleIntent(Intent intent)
 { ... }
} Handler

Android Services & Local IPC Douglas C. Schmidt

112

public class BGLoggingActivity extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 ...
 buttonStart.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {
 Intent intent = new Intent(BGLoggingActivity.this,
 BGLoggingService.class);

 intent.putExtra("LogMsg",
 "Log this message");

 startService(intent);
 }
 });
 }
}

Logging Activity Implementation

Add the message to log as an “extra”

Launch the Started Service that handles this Intent

Create a new Intent

Android Services & Local IPC Douglas C. Schmidt

113

public class BGLoggingService extends IntentService {
...

 public int onStartCommand(Intent intent, int flags,
 int startId) {

 super.onStartCommand(intent, flags, startId);
 return START_NOT_STICKY;
 }

 protected void onHandleIntent(Intent intent) {
 ...
 Log.i(TAG, intent.getCharSequenceExtra
 ("LogMsg").toString());
 }
 ...
}

Logging Service Implementation

Inherit from IntentService class

This hook method
runs in a worker
thread & logs the data

Note the “inversion of control” in the Android Service framework

Don’t restart this Service if it’s shutdown

Android Services & Local IPC Douglas C. Schmidt

114

<application ... >

 <activity android:name=".BGLoggingActivity"
 android:label="@string/app_name">

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />

 </intent-filter>
 </activity>

 <service android:exported="false"
 android:name=".BGLoggingService" />

</application>

AndroidManifest.xml File

Service is only usable by
components in this application

developer.android.com/guide/topics/manifest/service-element.html#exported

http://developer.android.com/guide/topics/manifest/service-element.html#exported

Android Services & Local IPC Douglas C. Schmidt

115

<application ... >

 <activity android:name=".BGLoggingActivity"
 android:label="@string/app_name">

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />

 </intent-filter>
 </activity>

 <service android:exported="false"
 android:name=".BGLoggingService"
 android:process=":myProcess"/>

</application

AndroidManifest.xml File

Instruct Android to run the
BGLoggingService in its own process

developer.android.com/guide/topics/manifest/service-element.html#proc

http://developer.android.com/guide/topics/manifest/service-element.html#proc

Android Services & Local IPC Douglas C. Schmidt

116

Analysis of the Logging Service Example
• The LoggingService is an intentionally simplified

example

Android Services & Local IPC Douglas C. Schmidt

117

Analysis of the Logging Service Example
• The LoggingService is an intentionally simplified

example
• You don’t need to implement it as an

IntentService (or even as a Service)
• You could simply do the logging in a new

Thread or ignore concurrency altogether!

Android Services & Local IPC Douglas C. Schmidt

118

Analysis of the Logging Service Example
• The LoggingService is an intentionally simplified

example
• You don’t need to implement it as an

IntentService (or even as a Service)
• In general, use a Service (or IntentService) when

you want to run a component even when a user
is not interacting with the app that hosts the
Service

Android Services & Local IPC Douglas C. Schmidt

119

Summary
• Programming Intent Services is very straightforward

• e.g., inherit from IntentService
& override onHandleIntent()

onHandleIntent()

…

process intent

MyIntent
Service

 onCreate()

 onStartCommand()

Intent Intent
Service

send
intent

startService()

Client

Android Services & Local IPC Douglas C. Schmidt

120

• Programming Intent Services is very straightforward
• IntentService creates a worker

thread & uses that thread to
run the service

Summary

onHandleIntent()

…

process intent

MyIntent
Service

Service
Handler

 sendMessage()

 onCreate()

 onStartCommand()

Intent Intent
Service

send
intent

startService()

 handleMessage()

Client

Android Services & Local IPC Douglas C. Schmidt

121

• Programming Intent Services is very straightforward
• IntentService creates a worker

thread & uses that thread to
run the service

• IntentService also creates a
queue that passes one intent
at a time to onHandleIntent()

Summary

onHandleIntent()

…

process intent

MyIntent
Service

3

queue
intent

dequeue
intent

Service
Handler

 sendMessage()

 onCreate()

 onStartCommand()

2

Intent Intent
Service

send
intent

startService()

 handleMessage()

4 5

1 Client

IntentService is the best option if you
don't require that your service handle

multiple requests simultaneously

www.vogella.com/articles/AndroidServices/article.html#service_intentservices

http://www.vogella.com/articles/AndroidServices/article.html#service_intentservices

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Communicating from Started Services

to Activities via Messengers

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

123

Learning Objectives in this Part of the Module
• Understand how to use Messengers to communicate from Started Services

back to their invoking Activities
• Provides an interface for IPC with remote processes without using AIDL

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

 send()

8

4

6

7

Download
Service

 onCreate()

3

dispatch
handler

9

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

create
reply

handler create
messenger

create
Intent

send
intent

Create a
worker

thread &
Handler

queue
Intent

Dequeue
Intent,
extract

Messager,
& get file

return to
sender

Android Services & Local IPC Douglas C. Schmidt

124

Overview of Messengers
• A Messenger provides a reference

to a Handler that others can use
to send messages to it

developer.android.com/reference/android/os/Messenger.html has more info

handleMessage()

Messenger

send()

Sender Process

1
associate

Handler with
Messenger

Reply
Handler

http://developer.android.com/reference/android/os/Messenger.html

Android Services & Local IPC Douglas C. Schmidt

125

Overview of Messengers
• A Messenger provides a reference

to a Handler that others can use
to send messages to it

• An Activity can create a Messenger
pointing to a Handler in one process
& then pass that Messenger to
another process

handleMessage()

Messenger

send()

 onCreate()

 onStartCommand()

startService()

Intent (with
Messenger

extra)

pass
Intent

Sender Process

Receiver Process

2

1 Reply
Handler

Android Services & Local IPC Douglas C. Schmidt

126

Overview of Messengers
• A Messenger provides a reference

to a Handler that others can use
to send messages to it

• An Activity can create a Messenger
pointing to a Handler in one process
& then pass that Messenger to
another process

• The receiver then does several things
• Obtains the Messenger

Messenger
(Proxy)

send()

handleMessage()

Messenger

send()

 onCreate()

 onStartCommand()

startService()

Intent (with
Messenger

extra)

pass
Intent

extract Messenger
from Intent

Sender Process

Receiver Process

2

3

1 Reply
Handler

Android Services & Local IPC Douglas C. Schmidt

127

Overview of Messengers
• A Messenger provides a reference

to a Handler that others can use
to send messages to it

• An Activity can create a Messenger
pointing to a Handler in one process
& then pass that Messenger to
another process

• The receiver then does several things
• Obtains the Messenger
• Returns the results back to the

sender process

Messenger
(Proxy)

Reply
Handler

handleMessage()

Messenger

send()

Sender Process

Receiver Process

 onCreate()

 onStartCommand()

startService()

Intent (with
Messenger

extra)

pass
Intent

2

1

extract Messenger
from Intent

3

4

Return to
sender

send()

Android Services & Local IPC Douglas C. Schmidt

128

Overview of Messengers
• A Messenger provides a reference

to a Handler that others can use
to send messages to it

• An Activity can create a Messenger
pointing to a Handler in one process
& then pass that Messenger to
another process

• The receiver then does several things
• You can use Messengers with both

Bound & Started Services to
implement the Command Processor
pattern

www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/CommandProcessor.pdf

Android Services & Local IPC Douglas C. Schmidt

129

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Download
Activity

ReplyHandler

handleMessage()

onCreate()

initiateDownload()

1
create
reply

handler

Android Services & Local IPC Douglas C. Schmidt

130

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1

create
messenger

2

The Messenger
stores a reference

to the Handler

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

131

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent create
Intent

It also stores a reference to
the Messenger as an “extra”

3

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

The Intent stores
the URI for the

image to download

Android Services & Local IPC Douglas C. Schmidt

132

startService()

send
intent

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

4

Crossing process
boundary

3
Download

Service

 onStartCommand()

 onCreate()

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

133

startService()

send
intent

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

4

Activate Service if it’s
not already running

3
Download

Service

 onStartCommand()

 onCreate()

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

134

startService()

Create a
worker

thread &
Handler

Download
Service

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

4

sendMessage()

downloadImage()

handleMessage()

Service
Handler

 onStartCommand()

 onCreate()

3

5

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

135

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent
3

4

6

Download
Service

 onCreate()

queue
Intent

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

136

startService()

Service
Handler

Dequeue
Intent,
extract

Messager,
& get file

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

4

6

7

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

137

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

 send()

4

6

7

return to
sender

Download
Service

 onCreate()

3

8

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

Crossing process boundary

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

138

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

 send()

8

4

6

7

Download
Service

 onCreate()

3

dispatch
handler

9

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

• DownloadActivity passes Messenger as an “extra” to the Intent used to
activate the DownloadService
• DownloadService uses the Messenger to reply back to the Activity

Using Messenger in Download App

Android Services & Local IPC Douglas C. Schmidt

139

• DownloadActivity passes a Messenger to the DownloadService

Programming a Messenger in Download Activity

public class DownloadActivity extends Activity {
 ...
 Handler downloadHandler = new Handler() { /* ... */ }

 public void initiateDownload(View v) {

 Intent intent = new Intent(DownloadActivity.this,
 DownloadService.class);
 ...

 intent.putExtra("MESSENGER",
 new Messenger (downloadHandler));
 startService(intent);
 }
... Start the service

Pass a Messenger as an “extra” in the Intent
used to start the DownloadService

Create a Handler to process reply from DownloadService

Android Services & Local IPC Douglas C. Schmidt

140

• DownloadService replies to Activity via Messenger’s send() method

Programming a Messenger in Download Service

public class DownloadService extends Service {
 ...
 private final class ServiceHandler extends Handler {
 ...
 public void downloadImage(Intent intent) {
 // ...

 Message msg = Message.obtain();
 msg.arg1 = result;
 Bundle bundle = new Bundle();
 bundle.putString("PATHNAME", pathname);
 msg.setData(bundle);
 Messenger messenger = (Messenger)
 intent.getExtras().get("MESSENGER"));
 messenger.send(msg);
 }
 ...

Extract Messenger & return pathname to the client

Code to downloading image to pathname goes here

Android Services & Local IPC Douglas C. Schmidt

141

• DownloadActivity receives Message via its Handler in the UI Thread

Programming a Messenger in Download Activity

public class DownloadActivity extends Activity {
 ...
 Handler downloadHandler = new Handler() {
 public void handleMessage(Message msg) {

 Bundle data = msg.getData();
 String pathname = data.getString ("PATHNAME");

 if (msg.arg1 != RESULT_OK || path == null) {
 Toast.makeText(DownloadActivity.this,"failed download",
 Toast.LENGTH_LONG).show();
 }
 displayImage(path);
 }
 };
... Display the image

Get pathname
from Download
Service

Android Services & Local IPC Douglas C. Schmidt

142

Summary
• Messengers provide a flexible framework for communicating between

processes in Android

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

 send()

8

4

6

7

Download
Service

 onCreate()

3

dispatch
handler

9

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

create
reply

handler create
messenger

create
Intent

send
intent

Create a
worker

thread &
Handler

queue
Intent

Dequeue
Intent,
extract

Messager,
& get file

return to
sender

Android Services & Local IPC Douglas C. Schmidt

143

Summary
• Messengers provide a flexible framework for communicating between

processes in Android
• Messengers make asynchrony easy, though non-trivial use-cases can be hard

startService()

Service
Handler

Download
Activity

ReplyHandler

handleMessage()
Messenger

onCreate()

initiateDownload()

1
2

Intent

 send()

8

4

6

7

Download
Service

 onCreate()

3

dispatch
handler

9

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

create
reply

handler create
messenger

create
Intent

send
intent

Create a
worker

thread &
Handler

queue
Intent

Dequeue
Intent,
extract

Messager,
& get file

return to
sender

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Communicate from Started Services to

Activities via Broadcast Receivers

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

145

Learning Objectives in this Part of the Module
• Understand how to use Broadcast Receivers to communicate from Started

Services back to their invoking Activities
• Provides IPC with (multiple) remote processes without using AIDL

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()
1

Intent

4

6

7

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

 sendBroadcast()

8
dispatch
handler

9

downloadImage()

create
Broadcast
Receiver

create
IntentFilter &

register receiver

create
Intent send

intent

Create a
worker

thread &
Handler

queue
Intent

Dequeue
Intent

& get file

broadcast
ACTION_

COMPLETE
Intent

Android Services & Local IPC Douglas C. Schmidt

146

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

developer.android.com/reference/android/content/BroadcastReceiver.html

Overview of Broadcast Receivers

Phone
App

System
Server

Activity Manager
Service

1: Register for broadcast
intent

Broadcast Receivers

http://developer.android.com/reference/android/content/BroadcastReceiver.html

Android Services & Local IPC Douglas C. Schmidt

147

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events
• Events implemented as Intents

Overview of Broadcast Receivers

Phone
App

System
Server

Broadcast Receivers

Battery
Service

2: Detect that battery
is low & create
corresponding
intent

Activity Manager
Service

1: Register for broadcast
intent

Android Services & Local IPC Douglas C. Schmidt

148

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events
• Events implemented as Intents
• Events are broadcast system-wide

Overview of Broadcast Receivers

Phone
App

System
Server

Broadcast Receivers

Battery
Service

3: Call sendBroadcast() to inform
interested receivers that battery is low

Activity Manager
Service

Android Services & Local IPC Douglas C. Schmidt

149

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events
• Events implemented as Intents
• Events are broadcast system-wide
• When an event occurs the Intents

are disseminated to all matching
receivers via their onReceive() hook
methods

Overview of Broadcast Receivers

Phone
App

System
Server

Broadcast Receivers

Battery
Service

Activity Manager
Service

4: onReceive() called back
to report low battery

3: Call sendBroadcast() to inform
interested receivers that battery is low

Android Services & Local IPC Douglas C. Schmidt

150

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

Overview of Broadcast Receivers

Battery
Service

Phone
App

System
Server

Activity Manager
Service

1: Register for broadcast
intent

Broadcast Receivers

www.vogella.com/articles/AndroidBroadcastReceiver/article.html has more

http://www.vogella.com/articles/AndroidBroadcastReceiver/article.html

Android Services & Local IPC Douglas C. Schmidt

151

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

• A receiver is restricted on what it
can do when it handles an Intent
• e.g., it may not show a dialog

or bind to a service

developer.android.com/reference/android/content/BroadcastReceiver.html#ReceiverLifecycle

Overview of Broadcast Receivers

Battery
Service

Phone
App

Activity Manager
Service

Broadcast Receivers

http://developer.android.com/reference/android/content/BroadcastReceiver.html#ReceiverLifecycle
http://developer.android.com/reference/android/content/BroadcastReceiver.html#ReceiverLifecycle

Android Services & Local IPC Douglas C. Schmidt

152

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

• A receiver is restricted on what it
can do when it handles an Intent

• Two ways to register a receiver:
• Statically publish it via the <receiver>

tag in the AndroidManifest.xml file

Overview of Broadcast Receivers

Phone
App

Activity Manager
Service

Broadcast Receivers

<receiver android:name="PhoneApp$NotificationBroadcastReceiver"
 exported="false">
 <intent-filter>
 <action android:name=
 "com.android.phone.ACTION_HANG_UP_ONGOING_CALL" />
 <action android:name=
 "com.android.phone.ACTION_SEND_SMS_FROM_NOTIFICATION"/>
 </intent-filter>
</receiver>

Android Services & Local IPC Douglas C. Schmidt

153

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

• A receiver is restricted on what it
can do when it handles an Intent

• Two ways to register a receiver:
• Statically publish it via the <receiver>

tag in the AndroidManifest.xml file
• Dynamically register it with Context.registerReceiver()

Overview of Broadcast Receivers

final BroadcastReceiver mReceiver =
 new PhoneAppBroadcastReceiver();
...
IntentFilter intentFilter =
 new IntentFilter(Intent.ACTION_AIRPLANE_MODE_CHANGED);
...
registerReceiver(mReceiver, intentFilter);

Phone
App

Activity Manager
Service

Broadcast Receivers

Android Services & Local IPC Douglas C. Schmidt

154

1

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

• A receiver is restricted on what it
can do when it handles an Intent

• Two ways to register a receiver
• Android supports several broadcast

mechanisms
• Normal – Sent with Context.sendBroadcast(), which is completely

asynchronous

Overview of Broadcast Receivers

Phone
App

Activity Manager
Service

Broadcast Receivers

System
Server

1

developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)

http://developer.android.com/reference/android/content/Context.htmlsendBroadcast(android.content.Intent)

Android Services & Local IPC Douglas C. Schmidt

155

• BroadcastReceivers are components
(receivers) that register for broadcast
events & receive/react to the events

• Activities can create receivers that
register for system or app events

• A receiver is restricted on what it
can do when it handles an Intent

• Two ways to register a receiver
• Android supports several broadcast

mechanisms
• Normal – Sent with Context.sendBroadcast(), which is completely

asynchronous
• Ordered – Sent with Context.sendOrderedBroadcast(), which is delivered

to one receiver at a time

Overview of Broadcast Receivers

Phone
App

Activity Manager
Service

Broadcast Receivers

System
Server

1 2

developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)

http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)

Android Services & Local IPC Douglas C. Schmidt

156

Download
Activity

BroadcastReceiver

onReceive()

onCreate() 1

Using a Broadcast Receiver in the Download App

onResume()

initiateDownload()

create
Broadcast
Receiver

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

Android Services & Local IPC Douglas C. Schmidt

157

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

onResume()

registerReceiver()
2

initiateDownload()

1

create
IntentFilter &

register receiver

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

158

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent
3

onResume()

registerReceiver()
2

initiateDownload()

create
Intent

The Intent stores the
URI as an “extra”

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

159

startService()

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

4

Download
Service

 onCreate()

3

 onStartCommand()
onResume()

registerReceiver()
2

initiateDownload()

Crossing process
boundary

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

send
intent

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

160

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

4

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

Create a
worker

thread &
Handler

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

161

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

4

6

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

queue
Intent

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

162

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

4

6

7

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

Dequeue
Intent

& get file

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

163

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

 sendBroadcast()

4

6

7

Download
Service

 onCreate()

3

broadcast
ACTION_

COMPLETE
Intent

5

 onStartCommand()

sendMessage()

downloadImage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

8

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

164

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()

Intent

4

6

7

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

handleMessage()

• DownloadActivity creates & registers a BroadcastReceiver with an IntentFilter
configured with the ACTION_COMPLETE action
• DownloadService broadcasts an ACTION_COMPLETE back to the Activity

onResume()

registerReceiver()
2

initiateDownload()

 sendBroadcast()

8
dispatch
handler

9

downloadImage()

1

Using a Broadcast Receiver in the Download App

Android Services & Local IPC Douglas C. Schmidt

165

Programming a Broadcast Receiver in Activity

public class DownloadActivity extends Activity {
 private BroadcastReceiver onEvent = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {

 String path = intent.getStringExtra(RESULT_PATH);

 if (path == null) {
 Toast.makeText(DownloadActivity.this,
 "Download failed.",
 Toast.LENGTH_LONG).show();
 }
 displayImage(path);
 }
 };
 ...

• DownloadActivity contains a BroadcastReceiver instance with hook method

Receive Intent sent by sendBroadcast()

Extract the path using “extra” within the Intent

Display the image

Android Services & Local IPC Douglas C. Schmidt

166

public class DownloadActivity extends Activity {
 ...
 public void onResume() {
 super.onResume();
 IntentFilter filter =
 new IntentFilter(ACTION_COMPLETE);
 registerReceiver(onEvent, filter);
 }

 public void onPause() {
 super.onPause();
 unregisterReceiver(onEvent);
 }
 ...

• DownloadActivity’s lifecycle methods register & unregister the receiver

Register BroadcastReceiver when Activity resumes

Unregister BroadcastReceiver before Activity pauses

Programming a Broadcast Receiver in Activity

Android Services & Local IPC Douglas C. Schmidt

167

• DownloadActivity passes the package name to the DownloadService

public class DownloadActivity extends Activity {
 ...

 public void initiateDownload(View v) {

 Intent intent = new Intent(DownloadActivity.this,
 DownloadService.class);
 ...

 intent.putExtra(PACKAGE_NAME, getPackageName());
 startService(intent);
 }
...

Start the service

Pass a package name as an “extra” in the
Intent used to start the DownloadService

Programming a Broadcast Receiver in Activity

Android Services & Local IPC Douglas C. Schmidt

168

• DownloadService replies to DownloadActivity via sendBroadcast()

public class DownloadService extends Service {
 ...
 private final class ServiceHandler extends Handler {
 ...
 public void downloadImage(Intent intent) {
 // ...

 Intent replyIntent = new Intent(ACTION_COMPLETE);
 replyIntent.putExtra(RESULT_PATH, pathname);
 String packageName = intent.getStringExtra(PACKAGE_NAME);
 intent.setPackage(packageName);

 sendBroadcast(replyIntent);
 }
 ...

Broadcast pathname to Activity

Code to downloading image to pathname goes here

Programming a Broadcast Receiver in Service

Restrict the target of the broadcast

Android Services & Local IPC Douglas C. Schmidt

169

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• Broadcast Receivers are generally used for more interesting use-cases…

startService()

Service
Handler

Download
Activity

BroadcastReceiver

onReceive()
IntentFilter

onCreate()
1

Intent

4

6

7

Download
Service

 onCreate()

3

5

 onStartCommand()

sendMessage()

handleMessage()

onResume()

registerReceiver()
2

initiateDownload()

 sendBroadcast()

8
dispatch
handler

9

downloadImage()

create
Broadcast
Receiver

create
IntentFilter &

register receiver

create
Intent send

intent

Create a
worker

thread &
Handler

queue
Intent

Dequeue
Intent

& get file

broadcast
ACTION_

COMPLETE
Intent

developer.android.com/reference/android/content/BroadcastReceiver.html#Security

http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security

Android Services & Local IPC Douglas C. Schmidt

170

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• However, there are subtle issues with security

developer.android.com/reference/android/content/BroadcastReceiver.html#Security

http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security

Android Services & Local IPC Douglas C. Schmidt

171

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• However, there are subtle issues with security

• The Intent namespace is global
• This may cause subtle conflicts

Android Services & Local IPC Douglas C. Schmidt

172

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• However, there are subtle issues with security

• The Intent namespace is global
• registerReceiver() allows any

app to send broadcasts to
that registered receiver
• Use permissions to

address this

developer.android.com/reference/android/content/BroadcastReceiver.html#Security

http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security
http://developer.android.com/reference/android/content/BroadcastReceiver.html#Security

Android Services & Local IPC Douglas C. Schmidt

173

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• However, there are subtle issues with security

• The Intent namespace is global
• registerReceiver(BroadcastReceiver,

IntentFilter) allows any app to send
broadcasts to that registered receiver

• When a receiver is published in an
app’s manifest & specifies intent-
filters for it, any other app can
send broadcasts to it regardless
of the specified filters
• To prevent others from sending

to it, make it unavailable to
them with android:exported="false"

developer.android.com/guide/topics/manifest/receiver-element.html

<receiver
 android:enabled=
 ["true" | "false"]
 android:exported=
 ["true" | "false"]
 android:icon="drawable resource"
 android:label="string resource"
 android:name="string"
 android:permission="string"
 android:process="string" >
 ...
</receiver>

http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html#enabled
http://developer.android.com/guide/topics/manifest/receiver-element.html#exported
http://developer.android.com/guide/topics/manifest/receiver-element.html#icon
http://developer.android.com/guide/topics/manifest/receiver-element.html#label
http://developer.android.com/guide/topics/manifest/receiver-element.html#nm
http://developer.android.com/guide/topics/manifest/receiver-element.html#prmsn
http://developer.android.com/guide/topics/manifest/receiver-element.html#proc

Android Services & Local IPC Douglas C. Schmidt

174

Summary
• Broadcast Receivers provide a scalable framework for communicating

between (potentially multiple) processes in Android
• However, there are subtle issues with security

• The Intent namespace is global
• registerReceiver(BroadcastReceiver,

IntentFilter) allows any app to send
broadcasts to that registered receiver

• When a receiver is published in an
app’s manifest & specifies intent-
filters for it, any other app can
send broadcasts to it regardless
of the filters that are specified

• sendBroadcast() et al allow any other
app to receive broadcasts
• Broadcasts can be restricted to a single app with Intent.setPackage()

developer.android.com/reference/android/content/Intent.html#setPackage(java.lang.String)

http://developer.android.com/reference/android/content/Intent.htmlsetPackage(java.lang.String)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

Android Services & Local IPC:
Communicating via Pending Intents

mailto:d.schmidt@vanderbilt.edu

Android Services & Local IPC Douglas C. Schmidt

176

Learning Objectives in this Part of the Module
• Understand how to use Pending Intents to communicate from (Started)

Services back to other components (e.g., Activities, Broadcast Receivers, etc.)
• A PendingIntent is a token given to an App to perform an action on your

Apps' behalf irrespective of whether your App’s process is alive

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

 send() schedule
Pending

Intent

create Intent

1

AlarmManager
Service

set()

create
Pending

Intent

deferredDownload() process
Intent &

download
image

2

Notification
ManagerService

ViewDownload
Activity

notify()

handleMessage()

send
Intent when

alarm expires

 onCreate()

create/
schedule
Intent &
Pending

Intent

3

 displayImage()

 onCreate()

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

9 addNotification()

4

8

register
PendingIntent

send
Pending

Intent process Intent

Android Services & Local IPC Douglas C. Schmidt

177

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code
• e.g., Notification Manager, Alarm

Manager, or other 3rd party apps

developer.android.com/reference/android/app/PendingIntent.html

Notifications in the
notification area

Notifications in the
notification drawer

http://developer.android.com/reference/android/app/PendingIntent.html

Android Services & Local IPC Douglas C. Schmidt

178

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code
• e.g., Notification Manager, Alarm

Manager, or other 3rd party apps
• The token maintained by the system

represents an Intent & the action to
perform on that Intent later
• Can be configured to work

irrespective of whether the original
App process is alive or not

developer.android.com/reference/android/app/PendingIntent.html

Start an Activity
to read email

http://developer.android.com/reference/android/app/PendingIntent.html

Android Services & Local IPC Douglas C. Schmidt

179

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code

• PendingIntents can be created via
various methods, e.g.:
• getActivity() on PendingIntent

• The PendingIntent returned by
this method starts a new Activity
when send() is called on it

developer.android.com/reference/android/app/PendingIntent.html
#getActivity(android.content.Context, int, android.content.Intent, int)

http://developer.android.com/reference/android/app/PendingIntent.html#getActivity(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getActivity(android.content.Context, int, android.content.Intent, int)

Android Services & Local IPC Douglas C. Schmidt

180

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code

• PendingIntents can be created via
various methods, e.g.:
• getActivity() on PendingIntent
• getBroadcast() on PendingIntent

• The PendingIntent returned by
this method sends a broadcast
to a Receiver when send() is
called on it

developer.android.com/reference/android/app/PendingIntent.html
#getBroadcast(android.content.Context, int, android.content.Intent, int)

http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context, int, android.content.Intent, int)

Android Services & Local IPC Douglas C. Schmidt

181

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code

• PendingIntents can be created via
various methods, e.g.:
• getActivity() on PendingIntent
• getBroadcast() on PendingIntent
• getService() on PendingIntent

• The PendingIntent returned by
this method starts a new Service
when send() is called on it

developer.android.com/reference/android/app/PendingIntent.html
#getService(android.content.Context, int, android.content.Intent, int)

http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)
http://developer.android.com/reference/android/app/PendingIntent.html#getService(android.content.Context, int, android.content.Intent, int)

Android Services & Local IPC Douglas C. Schmidt

182

Overview of Pending Intents
• A PendingIntent is a token given by

an App to another component that
allows it to use the permissions of
the App to execute a piece of code

• PendingIntents can be created via
various methods, e.g.:
• getActivity() on PendingIntent
• getBroadcast() on PendingIntent
• getService() on PendingIntent
• createPendingResult() on Activity

• The PendingIntent returned by
this method sends data back to
the Activity via its method
onActivityResult()

developer.android.com/reference/android/app/Activity.html
#createPendingResult(int, android.content.Intent, int)

http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#createPendingResult(int, android.content.Intent, int)

Android Services & Local IPC Douglas C. Schmidt

183

PendingIntent pi;
AlarmManager mgr;

void onCreate(Bundle b) {
 AlarmManager mgr =(AlarmManager)
 getSystemService
 (ALARM_SERVICE);
 Intent replyIntent = new Intent();
 ... // Set “extras” in replyIntent
 pi = createPendingResult
 (ALARM_ID, replyIntent, 0);
 mgr.setRepeating
 (AlarmManager.
 ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()
 + PERIOD, PERIOD, pi);
 finish();
}

Using PendingIntent w/AlarmManager Service
• PendingIntents are often used with

alarms
• Activity creates & schedules a

PendingIntent with the Alarm
Service

Activity

Alarm
Manager

Cause the alarm to
restart the Activity

when it expires

Android Services & Local IPC Douglas C. Schmidt

184 developer.android.com/reference/android/app/AlarmManager.html

• PendingIntents are often used with
alarms
• Activity creates & schedules a

PendingIntent with the Alarm
Service

void setRepeating(int type,
 long triggerAtTime,
 long interval,
 PendingIntent operation) {
 Alarm alarm = new Alarm();
 ...
 alarm.when = triggerAtTime;
 alarm.repeatInterval = interval;
 alarm.operation = operation;

 Message msg = Message.obtain();
 msg.what = ALARM_EVENT;
 ...
 mHandler.sendMessageAtTime
 (msg, alarm.when);
}

Alarm
Manager

AlarmManager maintains its schedule
outside of an App’s process, so it can
give the App control, even if it has to
start up a new process along the way

Using PendingIntent w/AlarmManager Service

http://developer.android.com/reference/android/app/AlarmManager.html

Android Services & Local IPC Douglas C. Schmidt

185

• PendingIntents are often used with
alarms
• Activity creates & schedules a

PendingIntent with the Alarm
Service

• When the timer expires the Alarm
Service sends a reply back to the
Activity

class AlarmHandler extends
 Handler {
 void handleMessage(Message m) {
 ...
 alarm.operation.send();
 ...
 }
}

Alarm
Manager

Using PendingIntent w/AlarmManager Service

Android Services & Local IPC Douglas C. Schmidt

186

• PendingIntents are often used with
alarms
• Activity creates & schedules a

PendingIntent with the Alarm
Service

• When the timer expires the Alarm
Service sends a reply back to the
Activity

• The Activity is retarted & its
onActivityResult() method
handles the reply

void onActivityResult
 (int requestCode,
 int resultCode,
 Intent data) {
 if (requestCode == ALARM_ID)
 {
 // Do something with
 // data in the Intent
 }
}

Activity

Alarm
Manager

Using PendingIntent w/AlarmManager Service

Android Services & Local IPC Douglas C. Schmidt

187

DeferredDownload
Activity

onCreate()

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

Using Pending Intents in Deferred Download App

create Intent

1

deferredDownload()

Android Services & Local IPC Douglas C. Schmidt

188

DeferredDownload
Activity

Pending
Intent

onCreate()

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

Using Pending Intents in Deferred Download App

1 create
Pending

Intent

deferredDownload()

2

The PendingIntent
stores a reference

to the Intent

Android Services & Local IPC Douglas C. Schmidt

189

DeferredDownload
Activity

Pending
Intent

onCreate()

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

Using Pending Intents in Deferred Download App

schedule
Pending

Intent

1

AlarmManager
Service

set()

deferredDownload()

2

handleMessage() 3

Schedule an alarm to
run at some future

point in time

Android Services & Local IPC Douglas C. Schmidt

190

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload()

2

handleMessage()

send
Intent when

alarm expires

 onCreate()

3 onHandleIntent()
4

Android Services & Local IPC Douglas C. Schmidt

191

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload() process
Intent &

download
image

2

handleMessage()
 onCreate()

3 onHandleIntent()
4

Android Services & Local IPC Douglas C. Schmidt

192

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload()

2

Notification
ManagerService

notify()

handleMessage()
 onCreate()

create/
schedule
Intent &
Pending

Intent

3

6

onHandleIntent()
4

Android Services & Local IPC Douglas C. Schmidt

193

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload()

2

Notification
ManagerService

notify()

handleMessage()
 onCreate()

3

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

addNotification()

4

register
PendingIntent

Android Services & Local IPC Douglas C. Schmidt

194

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload()

2

Notification
ManagerService

ViewDownload
Activity

notify()

handleMessage()
 onCreate()

3

 displayImage()

 onCreate()

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

addNotification()

4

8

send
Pending

Intent

Android Services & Local IPC Douglas C. Schmidt

195

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

• DownloadActivity creates a PendingIntent that’s registered with the Alarm
Service to start DeferredDownloadService to download an image in the future
• DeferredDownloadService uses Notification Service to inform user when the

image has been downloaded

 send()

Using Pending Intents in Deferred Download App

1

AlarmManager
Service

set()

deferredDownload()

2

Notification
ManagerService

ViewDownload
Activity

notify()

handleMessage()
 onCreate()

3

 displayImage()

 onCreate()

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

9 addNotification()

4

8

process Intent

Android Services & Local IPC Douglas C. Schmidt

196

Programming DeferredDownloadActivity

public class DeferredDownloadActivity extends Activity {
 ...
 public void initiateDeferredDownload(View v) {
 Intent intent = new Intent(DownloadActivity.this,
 DeferredDownloadService.class);
 PendingIntent sender = PendingIntent.getService(
 DownloadActivity.this, 0,
 intent, 0);

 AlarmManager am =
 (AlarmManager) getSystemService(ALARM_SERVICE);

 am.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 downloadTime,
 sender);
 }

• This Activity creates a PendingIntent & schedules it with Alarm Service

Create PendingIntent that
starts a Service to download the image

www.vogella.com/articles/AndroidNotifications/article.html#pendingintent has more

Schedule an alarm to trigger the
PendingIntent at the desired time

http://www.vogella.com/articles/AndroidNotifications/article.html#pendingintent

Android Services & Local IPC Douglas C. Schmidt

197

• DeferredDownloadService uses the Android Notification Service to alert user
when a requested image has been downloaded
public class DeferredDownloadService extends IntentService {
 ...
 protected void onHandleIntent(Intent intent) {
 String pathname = downloadImage(intent);

 Intent viewDownloadIntent =
 new Intent(this, ViewDownloadActivity.class);
 intent.setData(pathname);

 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, viewDownloadIntent,
 0);
 ...

Code to downloading image to pathname goes here

Programming DeferredDownloadService

Prepare Intent to trigger if notification is selected

Create PendingIntent to register with Notification Service

Android Services & Local IPC Douglas C. Schmidt

198

public class DeferredDownloadService extends IntentService {
 ...
 protected void onHandleIntent(Intent intent) {
 ...
 Notification notification = new Notification.Builder(this)
 .setContentTitle("Image download complete")
 .setContentText(pathname).setSmallIcon(R.drawable.icon)
 .setContentIntent(contentIntent).build();

 NotificationManager nm = (NotificationManager)
 getSystemService(NOTIFICATION_SERVICE);
 notification.flags |= Notification.FLAG_AUTO_CANCEL;
 notificationManager.notify(0, notification);
 ...

• DeferredDownloadService uses Notification Service to alert user when a
requested image has been downloaded

Build notification

Programming DeferredDownloadService

Register with the Notification Service

Android Services & Local IPC Douglas C. Schmidt

199

Programming ViewDownloadActivity
• This Activity is called when the user selects a notification that indicates the

download has succeeded
public class ViewDownloadActivity extends Activity {
 ...
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent callersIntent = getIntent();
 String pathname = callersIntent.getData().toString();

 displayImage(pathname);

 }

Get the pathname from the Intent
that started this Activity

Display the image

Android Services & Local IPC Douglas C. Schmidt

200

Summary
• Pending Intents provide a powerful framework for an App to delegate some

processing to another App at some future time or in some other context

DeferredDownload
Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

 send() schedule
Pending

Intent

create Intent

1

AlarmManager
Service

set()

create
Pending

Intent

deferredDownload() process
Intent &

download
image

2

Notification
ManagerService

ViewDownload
Activity

notify()

handleMessage()

send
Intent when

alarm expires

 onCreate()

create/
schedule
Intent &
Pending

Intent

3

 displayImage()

 onCreate()

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

9 addNotification()

4

8

register
PendingIntent

send
Pending

Intent process Intent

Android Services & Local IPC Douglas C. Schmidt

201

Summary
• Pending Intents provide a powerful framework for an App to delegate some

processing to another App at some future time or in some other context
• Pending Intents can also be used to communicate from a (Started) Service

back to some other Android component
• They are a bit complicated to use…

 DeferredDownload

Activity

Pending
Intent

onCreate()

DeferredDownloadService

5

 send() schedule
Pending

Intent

create Intent

1

AlarmManager
Service

set()

create
Pending

Intent

deferredDownload() process
Intent &

download
image

2

Notification
ManagerService

ViewDownload
Activity

notify()

handleMessage()

send
Intent when

alarm expires

 onCreate()

create/
schedule
Intent &
Pending

Intent

3

 displayImage()

 onCreate()

6

StatusBar
ManagerService

onHandleIntent()

7

onClickHandler()

9 addNotification()

4

8

register
PendingIntent

send
Pending

Intent process Intent

	Slide Number 1
	Introduction
	Introduction
	Introduction
	Slide Number 5
	Learning Objectives in this Part of the Module
	Overview of a Service
	Overview of a Service
	Overview of a Service
	Overview of a Service
	Implementing a Service
	Implementing a Service
	Implementing a Service
	Service Lifecycle Hook Methods
	Service Lifecycle Hook Methods
	Service Lifecycle Hook Methods
	Service Lifecycle Hook Methods
	Configuring a Service into the Android System
	Configuring a Service into the Android System
	Summary
	Summary
	Summary
	Summary
	Slide Number 24
	Learning Objectives in this Part of the Module
	Learning Objectives in this Part of the Module
	Communicating to Services
	Communicating to Services
	Communicating to Services
	Communicating from Services
	Communicating from Services
	Communicating from Services
	Communicating from Services
	Common Service Communication Patterns
	Common Service Communication Patterns
	Common Service Communication Patterns
	Common Service Communication Patterns
	Common Service Communication Patterns
	Summary
	Slide Number 40
	Learning Objectives in this Part of the Module
	Overview of Started Services
	Overview of Started Services
	Overview of Started Services
	Overview of Started Services
	Overview of Started Services
	Overview of Started Services
	Overview of Started Services
	Summary
	Summary
	Summary
	Slide Number 52
	Learning Objectives in this Part of the Module
	Programming a Started Service
	Programming a Started Service
	Programming a Started Service
	Programming a Started Service
	Music Player App Overview
	Music Player App Overview
	Music Player App Overview
	Music Player App Overview
	Music Player App Interactions
	Music Player App Interactions
	Music Player App Interactions
	Music Player Activity Implementation
	Music Player Service Implementation
	AndroidManifest.xml File
	Analysis of the Music Player Service Example
	Analysis of the Music Player Service Example
	Analysis of the Music Player Service Example
	Download App Overview
	Download App Overview
	Download App Overview
	Download App Interactions
	Download App Interactions
	Download App Interactions
	Download App Interactions
	Download App Interactions
	Download App Interactions
	Download App Interactions
	Download Activity Implementation
	Download Service Implementation
	Download Service Implementation
	Download Service Implementation
	Analysis of the Download Service Example
	Analysis of the Download Service Example
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 92
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Overview of IntentService
	Summary
	Summary
	Slide Number 104
	Learning Objectives in this Part of the Module
	Logging App Overview
	Logging App Overview
	Logging App Overview
	Logging App Overview
	Logging App Overview
	Logging App Overview
	Logging Activity Implementation
	Logging Service Implementation
	AndroidManifest.xml File
	AndroidManifest.xml File
	Analysis of the Logging Service Example
	Analysis of the Logging Service Example
	Analysis of the Logging Service Example
	Summary
	Summary
	Summary
	Slide Number 122
	Learning Objectives in this Part of the Module
	Overview of Messengers
	Overview of Messengers
	Overview of Messengers
	Overview of Messengers
	Overview of Messengers
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Using Messenger in Download App
	Programming a Messenger in Download Activity
	Programming a Messenger in Download Service
	Programming a Messenger in Download Activity
	Summary
	Summary
	Slide Number 144
	Learning Objectives in this Part of the Module
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Overview of Broadcast Receivers
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Using a Broadcast Receiver in the Download App
	Programming a Broadcast Receiver in Activity
	Programming a Broadcast Receiver in Activity
	Programming a Broadcast Receiver in Activity
	Programming a Broadcast Receiver in Service
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 175
	Learning Objectives in this Part of the Module
	Overview of Pending Intents
	Overview of Pending Intents
	Overview of Pending Intents
	Overview of Pending Intents
	Overview of Pending Intents
	Overview of Pending Intents
	Using PendingIntent w/AlarmManager Service
	Using PendingIntent w/AlarmManager Service
	Using PendingIntent w/AlarmManager Service
	Using PendingIntent w/AlarmManager Service
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Using Pending Intents in Deferred Download App
	Programming DeferredDownloadActivity
	Programming DeferredDownloadService
	Programming DeferredDownloadService
	Programming ViewDownloadActivity
	Summary
	Summary

