
Android Concurrency:  
The Half-Sync/Half-Async Pattern (Part 1) 

 
Douglas C. Schmidt 

  d.schmidt@vanderbilt.edu 
www.dre.vanderbilt.edu/~schmidt  

Institute for Software 
Integrated Systems  

Vanderbilt University  
Nashville, Tennessee, USA 

CS 282 Principles of Operating Systems II 
Systems Programming for Android 

mailto:d.schmidt@vanderbilt.edu


Android Concurrency Douglas C. Schmidt 

2 

Learning Objectives in this Part of the Module 
• Understand the Half-Sync/Half-Async pattern 



Android Concurrency Douglas C. Schmidt 

3 

Challenge: Combining Sync & Async Processing 
Context 
• A concurrent system that performs both asynchronous & synchronous 

processing services that must communicate 
• The ThreadedDownload app a good example of this context 

Socket 
Socket 

Downloads an image from 
a server & displays it 



Android Concurrency Douglas C. Schmidt 

4 

Problems 
• Services that want the simplicity of synchronous processing shouldn’t need to 

address the complexities of asynchrony 
 

Challenge: Combining Sync & Async Processing 

Bitmap downloadBitmap(String url) { 
  InputStream is = (InputStream) new URL(url).getContent(); 
  return BitmapFactory.decodeStream(is); 
} 

Each thread needs to block independently to 
prevent a flow-controlled connection from 

degrading the QoS that other clients receive 

Socket 
Socket 



Android Concurrency Douglas C. Schmidt 

5 

Problems 
• Services that want the simplicity of synchronous processing shouldn’t need to 

address the complexities of asynchrony 
• Synchronous & asynchronous processing services should be able to 

communicate without complicating their programming model or unduly 
degrading their performance 

Challenge: Combining Sync & Async Processing 

Background  
Thread 1 

Background  
Thread n 

UI Thread 
(main thread) 

Socket 
Socket 

Don’t want to spawn an unbounded 
number of background threads! 



Android Concurrency Douglas C. Schmidt 

6 

UI Thread 

Background 
Thread1 

Background 
Thread2 

Background 
Thread3 

BlockingQueue 
AsyncTask framework 

Solution 
• Decompose the services in the system into two layers: synchronous & 

asynchronous 

Challenge: Combining Sync & Async Processing 

UI Thread 

Background 
Thread1 

Background 
Thread2 

MessageQueue 
A bounded number of threads can be mapped to separate 

CPUs/cores to scale up performance via concurrency 

Background 
Thread3 

UI Thread 
Looper MyActivity 



Android Concurrency Douglas C. Schmidt 

7 

Solution 
• Decompose the services in the system into two layers: synchronous & 

asynchronous 
• Add a queueing layer between them to mediate the communication between 

services in the asynchronous & synchronous layers 

Challenge: Combining Sync & Async Processing 

UI Thread 

Background 
Thread1 

Background 
Thread2 

Background 
Thread3 

BlockingQueue 

AsyncTask framework 
<<execute>> <<next>> 

<<offer>> 

<<take>> 

<<take>> <<take>> 

UI Thread 
Looper MyActivity 



Android Concurrency Douglas C. Schmidt 

8 

Half-Sync/Half-Async            POSA2 Concurrency 
Intent 
• Decouple asynchronous (async) & synchronous (sync) service processing in 

concurrent systems by introducing two intercommunicating layers—one for 
async & one for sync service processing—to simplify programming without 
unduly reducing performance 

www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf has more info 

http://www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf


Android Concurrency Douglas C. Schmidt 

9 

Applicability 
• When it’s necessary to make performance efficient & scalable, while also 

ensuring that the use of concurrency simplifies—rather than complicates— 
programming 

Half-Sync/Half-Async            POSA2 Concurrency 



Android Concurrency Douglas C. Schmidt 

10 

Applicability 
• When it’s necessary to make performance efficient & scalable, while also 

ensuring that the use of concurrency simplifies—rather than complicates— 
programming 

• When there are constraints on certain types of operations in certain contexts 
• e.g., short-duration vs. long-duration, blocking vs. non-blocking, etc. 

Half-Sync/Half-Async            POSA2 Concurrency 

This pattern is widely applied in operating systems & modern GUI frameworks 



Android Concurrency Douglas C. Schmidt 

11 

Structure & Participants 

Half-Sync/Half-Async            POSA2 Concurrency 

UI Thread 



Android Concurrency Douglas C. Schmidt 

12 

Structure & Participants 

Half-Sync/Half-Async            POSA2 Concurrency 

Message 
Queue 



Android Concurrency Douglas C. Schmidt 

13 

Structure & Participants 

Half-Sync/Half-Async            POSA2 Concurrency 
Background threads 



Android Concurrency Douglas C. Schmidt 

14 

Dynamics 

Half-Sync/Half-Async            POSA2 Concurrency 

Event handling 
runs reactively/ 
asynchronously 



Android Concurrency Douglas C. Schmidt 

15 

Dynamics 

Half-Sync/Half-Async            POSA2 Concurrency 

Queue requests 
without blocking caller 



Android Concurrency Douglas C. Schmidt 

16 

Dynamics 

Half-Sync/Half-Async            POSA2 Concurrency 

Long-duration app processing 
runs synchronously 

Sync services run concurrently, relative both to each other & to async services 



Android Concurrency Douglas C. Schmidt 

17 

Consequences 
+ Simplification & performance  

• Programming of higher-level sync 
processing services are simplified 
without degrading performance of 
lower-level system services  
 

 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

18 

Consequences 
+ Simplification & performance  
+ Separation of concerns 

• Synchronization policies in each 
layer are decoupled so that each 
layer need not use the same 
concurrency strategies 
 

 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

19 

Consequences 
+ Simplification & performance  
+ Separation of concerns 
+ Centralization of inter-layer 

 communication 
• Inter-layer communication  

is centralized because all  
interaction is mediated by  
the queueing layer 
 
 

 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

20 

Consequences 
‒ May incur a boundary-crossing penalty 

• Arising from context switching, 
synchronization, & data copying 
overhead when data transferred 
between sync & async service  
layers via queueing layer 

 
 

 
 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

21 

Consequences 
‒ May incur a boundary-crossing penalty 
‒ Higher-level app services may not 

benefit from async I/O 
• Depending on design of OS or app 

framework interfaces, higher-level 
services may not use low-level  
async I/O devices effectively  

 
 

 
 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

22 

Consequences 
‒ May incur a boundary-crossing penalty 
‒ Higher-level app services may not 

benefit from async I/O 
‒ Complexity of debugging & testing  

• Apps can be hard to debug due  
to concurrent execution 
 

 
 

 
 

Half-Sync/Half-Async            POSA2 Concurrency 

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 



Android Concurrency Douglas C. Schmidt 

23 

Known Uses 
• UNIX Networking Subsystems 

 

Half-Sync/Half-Async            POSA2 Concurrency 

www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf has more info 

http://www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf


Android Concurrency Douglas C. Schmidt 

24 

Known Uses 
• UNIX Networking Subsystems 
• Object Request Brokers (ORBs) 

 

Half-Sync/Half-Async            POSA2 Concurrency 

www.dre.vanderbilt.edu/~schmidt/PDF/OM-01.pdf has more info 

ORB Core 

Object Adapter 

Object 
(Servant) 

<<ready to read>> 

POA Thread Pool 

Socket Event Sources 

IIOP Handlers & Acceptors 

Reactor 

Lane 
3 

Lane 
2 

Lane 
1 

http://www.dre.vanderbilt.edu/~schmidt/PDF/OM-01.pdf


Android Concurrency Douglas C. Schmidt 

25 

Known Uses 
• UNIX Networking Subsystems 
• Object Request Brokers (ORBs) 
• Android AsyncTask framework 

Half-Sync/Half-Async            POSA2 Concurrency 

developer.android.com/training/multiple-threads/communicate-ui.html  

AsyncTask 

Executor 

UI Thread 
(main thread) 

Lo
op

er
 Message 

Message 

Message 

Message 

Message 

Message 
Queue 

Message 

1. execute(url) 

3. execute(future) 

2. onPreExecute() 

4. doInBackGround() 

5. onProgressUpdate() 

6. onPostExecute() 

Handler 

http://developer.android.com/training/multiple-threads/communicate-ui.html


Android Concurrency Douglas C. Schmidt 

26 

Summary 

• This pattern separates concerns between the three layers, which makes 
concurrent software easier to understand, debug, & evolve 



Android Concurrency Douglas C. Schmidt 

27 

Summary 

• This pattern separates concerns between the three layers, which makes 
concurrent software easier to understand, debug, & evolve 

• In addition, async & sync services do not suffer from each other’s liabilities 
• Async service performance does not degrade due to blocking sync services 



Android Concurrency Douglas C. Schmidt 

28 

Summary 

• This pattern separates concerns between the three layers, which makes 
concurrent software easier to understand, debug, & evolve 

• In addition, async & sync services do not suffer from each other’s liabilities 
• Async service performance does not degrade due to blocking sync services 
• The simplicity of programming sync services is unaffected by async 

complexities, such as explicit state management 



Android Concurrency Douglas C. Schmidt 

29 

Summary 

• This pattern separates concerns between the three layers, which makes 
concurrent software easier to understand, debug, & evolve 

• In addition, async & sync services do not suffer from each other’s liabilities 
• The queueing layer avoids hard-coded dependencies between the async & 

sync service layers 
• It’s also easy to reprioritize the order in which messages are processed 



Android Concurrency:  
The Half-Sync/Half-Async Pattern (Part 2) 

 
Douglas C. Schmidt 

  d.schmidt@vanderbilt.edu 
www.dre.vanderbilt.edu/~schmidt  

Institute for Software 
Integrated Systems  

Vanderbilt University  
Nashville, Tennessee, USA 

CS 282 Principles of Operating Systems II 
Systems Programming for Android 

mailto:d.schmidt@vanderbilt.edu


Android Concurrency Douglas C. Schmidt 

31 

UI Thread 

Background 
Thread1 

Background 
Thread2 

Background 
Thread3 

BlockingQueue 
AsyncTask framework 

Learning Objectives in this Part of the Module 
• Understand how Half-Sync/Half-Async is implemented & applied in Android 

 

<<execute>> <<next>> 
UI Thread 

Looper MyActivity 

<<offer>> 

<<take>> 

<<take>> <<take>> 



Android Concurrency Douglas C. Schmidt 

32 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 

Half-Sync/Half-Async            POSA2 Concurrency 

frameworks/base/core/java/android/os/AsyncTask.java has the source code 

public abstract class AsyncTask<Params, Progress, Result> { 
  public final AsyncTask<Params, Progress, Result>     
    execute(Params... params) { 
    return executeOnExecutor(sDefaultExecutor, params); 
  } 
 
  public final AsyncTask<Params, Progress, Result>    
    executeOnExecutor(Executor exec, Params... params) { 
    onPreExecute(); 
    mWorker.mParams = params; 
    exec.execute(mFuture); 
    return this; 
  } 
  ... 

Identify short-duration 
services & implement 

them in the async layer 

http://frameworks/base/core/java/android/os/MessageQueue.java


Android Concurrency Douglas C. Schmidt 

33 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 

Half-Sync/Half-Async            POSA2 Concurrency 

frameworks/base/core/java/android/os/AsyncTask.java has the source code 

public abstract class AsyncTask<Params, Progress, Result> { 
  public AsyncTask() { 
    mWorker = new WorkerRunnable<Params, Result>() { 
      public Result call() throws Exception { 
        ... 
        return postResult(doInBackground(mParams)); 
      } 
    }; 
    ... 

Identify long-duration services & 
implement them in the sync layer 

http://frameworks/base/core/java/android/os/MessageQueue.java
http://frameworks/base/core/java/android/os/MessageQueue.java
http://frameworks/base/core/java/android/os/MessageQueue.java


Android Concurrency Douglas C. Schmidt 

34 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 

Half-Sync/Half-Async            POSA2 Concurrency 

frameworks/base/core/java/android/os/AsyncTask.java has the source code 

public class ThreadPoolExecutor  
       extends AbstractExecutorService { 
  /** 
   * The queue used for holding tasks and handing off to worker 
   * threads. */ 
  private final BlockingQueue<Runnable> workQueue; 

Identify inter-layer communication strategies 
& implement them in the queueing layer 

http://frameworks/base/core/java/android/os/MessageQueue.java


Android Concurrency Douglas C. Schmidt 

35 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 
• Implement the services  

in the synchronous layer 

Half-Sync/Half-Async            POSA2 Concurrency 

Download in background thread 

class DownloadAsyncTask extends 
      AsyncTask<String, Integer, Bitmap> { 
  ... 
  protected Bitmap 
  doInBackground(String... url) { 
  return downloadImage(url[0]); 
} 
 

 
 



Android Concurrency Douglas C. Schmidt 

36 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 
• Implement the services  

in the synchronous layer 
• Implement the services  

in the asynchronous layer 

Half-Sync/Half-Async            POSA2 Concurrency 

class DownloadAsyncTask extends 
      AsyncTask<String, Integer, Bitmap> { 
 
protected void onPreExecute() {  
  dialog.display(); 
} 
 
protected void onPostExecute 
                  (Bitmap bitmap) { 
  performPostDownloadOperations(bitmap); 
  dialog.dismiss(); 
} 

} 

Perform on  
UI thread 

Perform on 
UI thread 



Android Concurrency Douglas C. Schmidt 

37 

Implementation 
• Decompose overall system into three layers: synchronous, asynchronous, & 

queueing 
• Implement the services  

in the synchronous layer 
• Implement the services  

in the asynchronous layer 
• Implement (or reuse) the  

queueing layer 

Half-Sync/Half-Async            POSA2 Concurrency 

frameworks/base/core/java/android/os/AsyncTask.java has the source code 

public class ThreadPoolExecutor  
       extends AbstractExecutorService { 
  ... 
  private Runnable getTask() { 
    ... 
    Runnable r = workQueue.take(); 
    ... 
    return r; 
    ... 
 
  public void execute(Runnable command) { 
    ... 
    workQueue.offer(command); 
    ... 
 

http://frameworks/base/core/java/android/os/MessageQueue.java


Android Concurrency Douglas C. Schmidt 

38 

Applying Half-Sync/Half-Async in Android 
 

Half-Sync/Half-Async            POSA2 Concurrency 

execute(url) 

onPreExecute() 

onPostExecute() 

execute 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

: Download 
Activity 

: Blocking 
Queue 

offer() 

take() 

doInBackground() 
UI  
Thread 

Worker 
Threads 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

call() 

postResult() 

UI Thread receives 
user request to 

download a particular 
URL & calls execute() 



Android Concurrency Douglas C. Schmidt 

39 

Applying Half-Sync/Half-Async in Android 
 

Half-Sync/Half-Async            POSA2 Concurrency 

execute(url) 

onPreExecute() 

onPostExecute() 

execute 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

: Download 
Activity 

: Blocking 
Queue 

offer() 

take() 

doInBackground() 
UI  
Thread 

Worker 
Threads 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

call() 

postResult() 
Executor runs a pool of worker 

threads that remove user request, 
downloads file synchronously, & then 
displays the result on the UI Thread 



Android Concurrency Douglas C. Schmidt 

40 

Applying Half-Sync/Half-Async in Android 
 

Half-Sync/Half-Async            POSA2 Concurrency 

execute(url) 

onPreExecute() 

onPostExecute() 

execute 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

: Download 
Activity 

: Blocking 
Queue 

offer() 

take() 

doInBackground() 
UI  
Thread 

Worker 
Threads 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

call() 

postResult() 
A synchronized request queue 
mediates access between the 

sync & async layers 



Android Concurrency Douglas C. Schmidt 

41 

Applying Half-Sync/Half-Async in Android 
 

Half-Sync/Half-Async            POSA2 Concurrency 

execute(url) 

onPreExecute() 

onPostExecute() 

execute 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

: Download 
Activity 

: Blocking 
Queue 

offer() 

take() 

doInBackground() 
UI  
Thread 

Worker 
Threads 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

call() 

postResult() 

If flow control occurs on 
a connection each thread 

can block without 
degrading the QoS of 

other threads in the pool 



Android Concurrency Douglas C. Schmidt 

42 

Summary 

• The Android AsyncTask framework implements Half-Sync/Half-Async pattern 
to encapsulate the creation of background thread processing & 
synchronization with the UI Thread 
• It also supports reporting progress of the running tasks 

UI Thread 

Background 
Thread1 

Background 
Thread2 

Background 
Thread3 

BlockingQueue 

AsyncTask framework 
<<execute>> <<next>> 

UI Thread 
Looper MyActivity 

<<offer>> 

<<take>> 

<<take>> <<take>> 



Android Concurrency Douglas C. Schmidt 

43 

Summary 

• The Android AsyncTask framework implements Half-Sync/Half-Async pattern 
to encapsulate the creation of background thread processing & 
synchronization with the UI Thread 

• The AsyncTask framework is a sophisticated implementation of Half-
Sync/Half-Async 
• e.g., there are multiple interactions between the sync & async portions via 

various queues 

UI Thread 

Background 
Thread1 

Background 
Thread2 

Background 
Thread3 

BlockingQueue 

AsyncTask framework 
<<execute>> <<next>> 

UI Thread 
Looper MyActivity 

<<offer>> 

<<take>> 

<<take>> <<take>> 


	Slide Number 1
	Learning Objectives in this Part of the Module
	Challenge: Combining Sync & Async Processing
	Challenge: Combining Sync & Async Processing
	Challenge: Combining Sync & Async Processing
	Challenge: Combining Sync & Async Processing
	Challenge: Combining Sync & Async Processing
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Summary
	Summary
	Summary
	Summary
	Slide Number 30
	Learning Objectives in this Part of the Module
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Half-Sync/Half-Async            POSA2 Concurrency
	Summary
	Summary

