
Overview of Patterns

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

2

Topics Covered in this Module

• Motivate the importance of
design experience & leveraging
recurring design structure to
become a master software
developer

Overview of Patterns Douglas C. Schmidt

3

Topics Covered in this Module

• Motivate the importance of
design experience & leveraging
recurring design structure to
become a master software
developer

• Introduce patterns as a means
of capturing & applying proven
design experience that makes
software more robust to change

Observer
update

ConcreteObserver
update
doSomething

Subject

setData
getData
notify
attach
detach

state
observerList

*

state = X;
notify();

s->getData()
for all observers
in observerList do
 update()

Overview of Patterns Douglas C. Schmidt

4

Topics Covered in this Module

• Motivate the importance of
design experience & leveraging
recurring design structure to
become a master software
developer

• Introduce patterns as a means
of capturing & applying proven
design experience that makes
software more robust to change

• Describe a process for
successfully applying patterns
to software development
projects

Overview of Patterns Douglas C. Schmidt

5

Becoming a Master Software Developer
• Software methods emphasize design notations, such as UML

• Fine for specification & documentation

Overview of Patterns Douglas C. Schmidt

6

• Software methods emphasize design notations, such as UML
• Fine for specification & documentation

• But software is more than drawing diagrams
• Good draftsmen are not necessarily

good architects!

Becoming a Master Software Developer

Overview of Patterns Douglas C. Schmidt

7

• Software methods emphasize design notations, such as UML
• Fine for specification & documentation

• But software is more than drawing diagrams
• Good draftsmen are not necessarily

good architects!
• Good software developers rely on design experience

• At least as important as knowledge of programming languages

Becoming a Master Software Developer
Observer

update

ConcreteObserver
update
doSomething

Subject

setData
getData
notify
attach
detach

state
observerList

*

state = X;
notify();

s->getData()
for all observers
in observerList do
 update()

Overview of Patterns Douglas C. Schmidt

8

• Software methods emphasize design notations, such as UML
• Fine for specification & documentation

• But software is more than drawing diagrams
• Good draftsmen are not necessarily

good architects!
• Good software developers rely on design experience

• At least as important as knowledge of programming languages
• Design experience can be codified via design & code reuse

• Design reuse: Match problem(s) to design
experience & best practices

• Code reuse: Reify proven designs within
a particular set
of domains &
development
environments

Becoming a Master Software Developer
Observer

update

ConcreteObserver
update
doSomething

Subject

setData
getData
notify
attach
detach

state
observerList

*

state = X;
notify();

s->getData()
for all observers
in observerList do
 update()

Overview of Patterns Douglas C. Schmidt

9

Leveraging Recurring Design Structures
Well-designed software systems exhibit recurring structures that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Elegance
• Modularity

Therein lies valuable design knowledge

Challenge: extracting, documenting,
communicating, applying, & preserving
this knowledge without undue time,
effort, & risk in the face of continual
change to the software!

Overview of Patterns Douglas C. Schmidt

10

Making Software that’s Robust to Changes
• Change is intrinsic to software development as requirements, use-cases,

technologies, platforms, & quality goals evolve

• Robustness to change means that software can be modified locally without
endangering overall structure

• It is a quality that
reflects ease of evolution
& maintenance costs

What is needed is a means
to address particular design
aspects of software & allow
controlled variation &
evolution of these aspects

Overview of Patterns Douglas C. Schmidt

11

• A patterns describes solution(s) to common problem(s) arising within a
context by

• Naming a recurring design structure

Key to Mastery: Knowledge of Software Patterns

Jug
Handle
pattern

Overview of Patterns Douglas C. Schmidt

12

• A patterns describes solution(s) to common problem(s) arising within a
context by

• Naming a recurring design structure

Key to Mastery: Knowledge of Software Patterns

Observer

ConcreteObserver

Subject

Observer
pattern

“define a one-to-many dependency
between objects so that when one

object changes state, all
dependents are notified & updated”

Overview of Patterns Douglas C. Schmidt

13

• A patterns describes solution(s) to common problem(s) arising within a
context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key classes/objects*
• Roles & relationships
• Dependencies
• Interactions
• Conventions

Key to Mastery: Knowledge of Software Patterns

*Interpret “class” & “object” loosely: patterns are for more than OO languages!

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

14

• A patterns describes solution(s) to common problem(s) arising within a
context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key classes/objects
• Roles & relationships
• Dependencies
• Interactions
• Conventions

• Abstracting from concrete design
elements, e.g., problem domain,
programming language, vendor, etc.

Key to Mastery: Knowledge of Software Patterns

Observer
pattern

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

15

• A patterns describes solution(s) to common problem(s) arising within a
context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key classes/objects
• Dependencies
• Roles & Relationships
• Interactions
• Conventions

• Abstracting from concrete design
elements, e.g., problem domain,
programming language, vendor, etc.

• Distilling & codifying knowledge gleaned
from successful design experience

Key to Mastery: Knowledge of Software Patterns

Observer
pattern

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

16

• They are independent of
programming languages &
implementation techniques

Common Characteristics of Patterns

Overview of Patterns Douglas C. Schmidt

17

• They are independent of
programming languages &
implementation techniques

• They define “micro-architectures”

• i.e., a “society of objects”

Common Characteristics of Patterns
Observer

update

ConcreteObserver
update
doSomething

Subject

setData
getData
notify
attach
detach

state
observerList

*

state = X;
notify();

s->getData()
for all observers
in observerList do
 update()

Overview of Patterns Douglas C. Schmidt

18

• They are independent of
programming languages &
implementation techniques

• They define “micro-architectures”

• i.e., a “society of objects”

• They aren’t code or (concrete)
designs, so they must be reified
& applied in particular languages

Common Characteristics of Patterns
public class EventHandler extends Observer {
 public void update(Observable obj,
 Object arg)
 { /* … */ }
 …

public class EventSource extends Observable,
 implements Runnable {
 public void run()
 { /* … */ notifyObservers(/* … */); }
 …

EventSource eventSource =
 new EventSource();
EventHandler eventHandler =
 new Event_Handler();
eventSource.addObserver(eventHandler);
Thread thread = new Thread(eventSource);
thread.start();
…

Observer
pattern in Java

Overview of Patterns Douglas C. Schmidt

19

• They are independent of
programming languages &
implementation techniques

• They define “micro-architectures”

• i.e., a “society of objects”

• They aren’t code or (concrete)
designs, so they must be reified
& applied in particular languages

Common Characteristics of Patterns
class Event_Handler : public Observer { public:
 virtual void update(Observable obj,
 Object arg)
 { /* … */ }
 …

class Event_Source : public Observable,
 public Runnable { public:
 virtual void run()
 { /* … */ notify_observers(/* … */); }
 …
 Event_Source event_source =
 new Event_Source_Impl;
Event_Handler event_handler =
 new Event_Handler_Impl;
event_source->add_observer(event_handler);
Thread thread = new Thread(event_source);
thread->start();
…

Observer pattern in C++
(uses the GoF Bridge pattern
with reference counting to

simplify memory
management & ensure

exception-safe semantics)

Overview of Patterns Douglas C. Schmidt

20

• They are independent of

programming languages &
implementation techniques

• They define “micro-architectures”

• i.e., a “society of objects”

• They aren’t code or (concrete)
designs, so they must be reified
& applied in particular languages

• They are not methods, but can be used
an adjunct to other methods

• e.g., Rational Unified Process, Agile, etc.

• There are also patterns for organizing
effective software development teams &
navigating other complex settings

Common Characteristics of Patterns

Overview of Patterns Douglas C. Schmidt

21

Common Parts of a Pattern Description
• Name & statement of pattern intent
• Problem addressed by pattern

• Including “forces” & “applicability”
• Solution

• Visual & textual descriptions of
pattern structure & dynamics

• Consequences
• Pros & cons of applying the pattern

• Implementation guidance
• May include source code examples

• Known uses
• “rule of three”

• Related patterns
• Tradeoffs between alternative patterns

See c2.com/cgi/wiki?PatternForms for more info on pattern forms

http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms

Overview of Patterns Douglas C. Schmidt

22

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

Overview of Patterns Douglas C. Schmidt

23

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

Strategy
pattern

Template
Method
pattern

Overview of Patterns Douglas C. Schmidt

24

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to apply
the selected patterns

• Patterns may require slight
modifications for particular contexts

Content
Observer
onChange

EventHandler

onChange
…

Content
Observable

registerObserver
unregisterObserver
notifyChange

state
observerList

for all observers
in observerList do
 onChange()

*

One use of the Observer
Pattern in Android

Overview of Patterns Douglas C. Schmidt

25

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to apply
the selected patterns

• Patterns may require modifications
for particular contexts

Broadcast
Receiver
onReceive

BroadcastHandler

onReceive
…

Context

registerReceiver
unregisterReceiver
sendBroadcast

state
observerList

for all observers
in observerList do
 onReceive()

*

A different use of the
Observer Pattern in Android

Overview of Patterns Douglas C. Schmidt

26

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to apply
the selected patterns

• Patterns may require modifications
for particular contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
public:
 static Singleton *instance () {
 // First check
 if (instance_ == 0) {
 Guard<Thread_Mutex> g(lock_);
 if (instance_ == 0) // Double check
 instance_ = new Singleton;
 }
 return instance_;
 }
private:
 static Singleton *instance_;
 static Thread_Mutex lock_;
};

Singleton pattern vs.
Double-Checked
Locking Optimization
Pattern

Overview of Patterns Douglas C. Schmidt

27

Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to apply
the selected patterns

• Patterns may require modifications
for particular contexts

• Combine with other patterns &
implement/integrate with code

Overview of Patterns Douglas C. Schmidt

28

Summary
• Patterns support

• Design at a more abstract level
• Treat many class/object

interactions as a conceptual unit
• Emphasize design qua design, not

(obscure) language features
• Provide ideal targets for design

refactoring
• Variation-oriented design process

1. Determine which design elements
can vary

2. Identify applicable pattern(s)
3. Vary patterns & evaluate trade-offs
4. Repeat…

• Patterns can be applied in all
software lifecycle phases
• Analysis, design, & reviews
• Implementation &

documentation
• Testing & optimization
• Reuse & refactoring

• Resist urge to brand everything as
a pattern
• Articulate specific benefits &

demonstrate general
applicability
• e.g., find three different

existing examples from code
other than your own!

Patterns often equated with OO languages, but can apply to non-OO languages

	Slide Number 1
	Topics Covered in this Module
	Topics Covered in this Module
	Topics Covered in this Module
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Leveraging Recurring Design Structures
	Making Software that’s Robust to Changes
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Parts of a Pattern Description
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Summary

