Overview of Patterns

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Module

* Motivate the importance of
design experience & leveraging
recurring design structure to
become a master software
developer

Overview of Patterns

Douglas C. Schmidt

Topics Covered In this

 Introduce patterns as a means
of capturing & applying proven
design experience that makes
software more robust to change

Subject

Module

Observer

state
observerList

state = X;

setData ©
getData
notify o
attach
detach

notify();

for all observers
in observerList do
update()

update

A

ConcreteObserver

update 0
doSomething

s->getData()

3

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Module

~ Model-View ~ . , - Presentation ~. , -~ ~ ~
Nof 3 :
-~ Confroller . - Abstraction-Control - ’?hared Reposﬂon;‘

-~ T~ - Half-Object ~. -~ =~
4 o A4 A
. lterator 'L _plus Protocol ' Interceptor P

~ “Replicated” ~. -~ T ~_ - Tomponent ~

N Mediator /“ ¢ P A

~Component Group

_— = = - = —m me =

~ ECDnﬁguratDrﬂ -

/ Lavers v T Database ™ |
. Yers ' Accesslayer .

-
— —

I
change

notification

notification state

» Describe a process for interiace iransor
successfully applying patterns __¥. N\

- feit T - T
’ Explicit \ p Data

to software development s merace _ - ~ Transfer Oblec! -

projects
1

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

» Software methods emphasize design notations, such as UML
* Fine for specification & documentation

Register_Sample

CCMException
reason : CCMExceptionReasan

more information
niot shown

7 ¢ if there are any remfote subs()

=

.

User-a4pp PublisherIrmpl socxDatawriterImpl | | WriteDataContainer DatalinkSet Datalink
1 i _cox_tegister() o : : : ;
! ™ : get_or_create_hamdlel) ' !
«enumeratian» <local
CCMExceptionReason $essionSynchronization ; e it arainetS e(}l H ,
-SYSTEM_ERROR +after_hegin() : void ! il = 4 : new PublicationIngtanceSamplel) !
-CREATE_ERROR +hefore_completion() : void ; ; :
-REMONVE_FRROR +after_campletion(in committed © boolean(idl)) © vaid ' : '
-OUPLICATE_KEY . i i
-FIND_ERROR : : :
-OBJECT_NOT_FOUND ; H i
-NO_SUCT-I_EN?ITY ' 5 : create_control_messaged) : '
«datatype» i H h
Principal ’W‘ ' H |
wexteptions llegalState : ‘6 ¢ send_cantral{) |: : i

& ! send_control()

¥

«locals
EnterpriseComponen

9 : Far all Datal_\1nks(l;l

«locals
EntityComponent
+set_entity_context(in ctx EntityContext) © woid
+unset_entity_cantext) : void
+Ccom_activate() | void
+com_load() © vaid
+com_starel) - vold
+com_passivatel) | void
+ocm_remove() | woid

1 sendi)

1 4
12 ¢ send_stopl) !
13 : skore instance datar) L

«locals
SessionComponent

+set_session_context{in cts : SessionContext) : void

Hoom_activatel) woid

HCom_passivate() © void

Hcem_remaove() | void

14 : store handle)

5 6]

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

« But software is more than drawing diagrams

» Good draftsmen are not necessarily
good architects!

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

for all observers

« Good software developers rely on design experience | " csererist o

update()

» At least as important as knowledge of programming languages

Subject Observer
state * | update
observerList state = X.
setData o notify();
getData
notify o ConcreteObserver
attach update o
detach doSomething

| s->getData() \|

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

Subject Observer
state * |_update
observerList state = X:
setData o notify();
getData
notify o ConcreteObserver
attach update o
detach doSomething

for all observers
in observerList do s->getData() \|
update()

» Design experience can be codified via design & code reuse

* Design reuse: Match problem(s) to design
experience & best practices |

OPERATION O
» Code reuse: Reify proven designs within R

ADAPTER

EXTENSION
INTERFACE
ACTIVATOR

SERIALIZER (

. I | STRATESY 1 F;LE::\EER"RS
a particuiar set i o ETTN
of domains & 7~ *—5 - e CERVICES e [e |

o
development IDL SKELETON parase
- CONTAINER LT

environments

@ORTABLE OBJECT ADAPTER
REAL-TIME ORB CORE (&P

1 _ ==
-!--=-!l !_!--_‘.‘- ——

Overview of Patterns Douglas C. Schmidt

Leveraging Recurring Design Structures

Well-designed software systems exhibit recurring structures that promote

Abstraction Client-side Broker Server-side Broker o
Client | [| Application

Flexibil Ity Proxy 7 request i invoke Component

Client . \ |

thod 1 ﬁ /\ \% send ‘ receive J thod 1
Reuse =7 mel od_ | ? | mel- od_
. thod 2 receive == send |=—— thod_2
Quality method._ Y] method_

—| discover] register ‘ [
Ele gance discover client proxy i . | register component

] Network
Modularity

N

Therein lies valuable design knowledge

Challenge: extracting, documenting,
communicating, applying, & preserving
this knowledge without undue time,
effort, & risk /n the face of continual
change to the software!

Overview of Patterns Douglas C. Schmidt

Making Software that’s Robust to Changes

* Change is intrinsic to software development as requirements, use-cases,
technologies, platforms, & quality goals evolve

* Robustness to change means that software can be modified locally without
endangering overall structure D

e It is a quality that
reflects ease of evolution
& maintenance costs

'REFACTORING

IMPROVING THE DESIGN
or Existing Cong

What is needed is a means
to address particular design
aspects of software & allow
controlled variation &
evolution of these aspects

FOWLER

i Kent Heck, John Brant,

- i

BOO0CE H
] JRcossox
E RUMBATGH

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

» A patterns describes solution(s) to common problem(s) arising within a
context by

 Naming a recurring design structure

Jug
Handle
pattern

11

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

» A patterns describes solution(s) to common problem(s) arising within a
context by

Subject Observer

T

ConcreteObserver

 Naming a recurring design structure

Observer
pattern

“define a one-to-many dependency
between objects so that when one
object changes state, all
dependents are notified & updated”

12

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

» A patterns describes solution(s) to common problem(s) arising within a
context by

Subject Observer
state * | update
A . P observerList state = X;

. Spe_C|fy|r_19 _de3|gn structure e_xpllcicly ity Z}
by identifying key classes/objects Zgggig 0 S
e Roles & relationships notify o Observer Yk @

attach ttern doSomething
e Dependencies detach patte
° |nteractions for all observers
_ in observerList do s->getData()
e Conventions update()

*Interpret “class” & “object” loosely: patterns are for more than OO languages!

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* A patterns describes solution(s) to common problem(s) arising within a
context by

Subject Observer
observerList state = X;
notify();

setData ©O
getData ConcreteObserver
notify o Observer update o)
attach doSomething
detach patter n

for all observers

in observerList do s->getData()

update()

e Abstracting from concrete design
elements, e.g., problem domain,
programming language, vendor, etc.

14

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* A patterns describes solution(s) to common problem(s) arising within a
context by

Subject Observer
observerList state = X;
notify();

setData ©O
getData ConcreteObserver
notify o Observer update o)
attach doSomething
detach patter n

for all observers

in observerList do s->getData()

update()

SMALLTALK-80

IS IMPLEMENTATION

 Distilling & codifying knowledge gleaned
from successful design experience

Adele Goldberg and David Robson

15

Overview of Patterns Douglas C. Schmidt

Common Characterlstlcs of Patterns

* They are independent of
programming languages &
implementation techniques

Ken Armold + James Gosling * David Holmes

The Java Programming The C#
lmlg{mgﬁ, Programming
Fourth Edition Language

Third Edition

.8
..

BJARNE STROUSTRUP
THE CREATOR OT Cot

Special Annotated Edition for C¥3.0 ¥

Programming in

Objective-C

>
JOHN BARNES

SECOND EDITION

THE

(-2

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

16

Overview of Patterns

Douglas C. Schmidt

Common Characteristics of Patterns

* They define “micro-architectures”

e i.e., a “society of objects”

Subject Observer
state * | update
observerList

state = X; A
setData © notify();
getData 3
notify o ConcreteObserver
attach update o
detach doSomething

for all observers
in observerList do
update()

s->getData()

17

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

public class EventHandler extends Observer {

public void update(Observable obj,
Object arg)

{7/~ ..*}

public class EventSource extends Observable,
iImplements Runnable {

« They aren’t code or (concrete) public void run()
designs, so they must be reified {/* ... */ notifyObservers(/* ... */); }
& applied in particular languages
EventSource eventSource =
new EventSource();

EventHandler eventHandler =
Observer new Event_Handler();

pattern in Java eventSource.addObserver(eventHandler);
Thread thread = new Thread(eventSource);
thread.start();

.18

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

class Event_Handler : public Observer { public:

virtual void update(Observable obj,
Object arg)
{7*.*}

class Event_Source : public Observable,
public Runnable { public:

 They aren’t code or (concrete) virtual void run()
designs, so they must be reified { /* ... */ notify_observers(/* ... */); }
& applied in particular languages

Event_Source event_source =

Observer pattern in C++ new Event_Source_lmpl;
(uses the GoF Bridge pattern Event_Handler event_handler =
with reference counting to new Event_Handler_Impl;
simplify memory event_source->add_observer(event_handler);
management & ensure Thread thread = new Thread(event_source);
exception-safe semantics) thread->start();

19

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

B THE RATIONAL
Agile UNIFIED PROCESS
Principles, Patterns, Mabg EAsy

dmi Prac Eumc#

A PracTiTIONER’S GUIDE TO THE RUP

PER KROLL
PHILIPPE KRUCHTEN

« They are not methods, but can be used Urganizatonal Paterns Datinig Design

an adjunct to other methods ”Mqﬂ?s”m DPWI”'”"P"[Patterns

Elements of Reusable
Objective-QOriented Paired Programming

* e.g., Rational Unified Process, Agile, etc.

» There are also patterns for organizing) - §. . DAL
effective software development teams & e oo o {-}“

navigating other complex settings
20

Overview of Patterns Douglas C. Schmidt

Common Parts of a Pattern Description

* Name & statement of pattern intent o Pyerns

Elements of Reusable

» Problem addressed by pattern Objc Ornidsaar

* Including “forces” & “applicability”
o Solution

 Visual & textual descriptions of
pattern structure & dynamics

 Consequences
* Pros & cons of applying the pattern
 Implementation guidance

A Pattern Language

Towns Buildings - Construction

.......

L

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

/l i | Christopher Alexander
d | \ i) ¥ e .
i Sara Ishikawa - Murray Silverstein
PATTERN - ORIENTED
I
SOFTWARE ARCHITECTURE
AL imrsgye = g

f.l
|

|

i

* May include source code examples
« Known uses
* “rule of three”
 Related patterns
» Tradeoffs between alternative patterns

See c2.com/cqgi/wiki?PatternForms for more info on pattern forms

http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms

Overview of Patterns

Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Have broad knowledge of patterns
relevant to their domain(s)

Small Memory
Software

Patterns for svstems with limited memory

Jorge Lus Ortega-Arjona

B

PATTERNS FOR
PARALLEL SOFTWARE
DESIGN

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
[versme 3 LEUEIEERLT

Res

omree Management

Design Patterns
Elements of Reusable
Object-Oriented.Seftware
Erich Gammal

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

LIITIEER FPatterns for Concurrent
Wetworked Bbjocts

Ccove

J2EE Parrerns

Best Practices and Design Strategies

DRAFT COVER as of 11303

ENTERPRISI
INTEGRATION
PATTERNS

s

Doug Lea
Concurrent

PATTERNS FOR
FAULT TOLERANT
SOFTWARE

f

PATTERN-ORIENTED
SOFTWARE
@ ARCHITECTURE

Programming in Java®
Second Edition

Design Principles and Patterns

On Patterns and Pattern Languages

[volume & |
SECURITY
i | PATTERNS
:: _ vt o Integrating Secarity
] [ra— amd Systems Engineering
hoony fal
PATTERN-ORIENTED [1orimaad oinen rarrinns |
s SOFTWARE
ARCHITECTURE SERVER
Disiikutsd Shler Compatiny COMPONENT
. PATTERNS
Gomponent Infrasiruciures
Ilustrated with £18

Overview of Patterns

Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

AbstractClass

Tl

TemplateMathad{) < -
PrimitiveQperationis)
PrimitiveCperalionzi

PrimitiveOperationi ()

i’%lrnﬂiu&@pﬂ ration2()

* Evaluate trade-offs & impact of using %x Template
. . . ConcreteClass
certain patterns in their software SR Method
Prim;’tivc—.DpﬂraTinnEf] pam?/’ﬂ
Context (Composition) > » Strategy (Compositor)
contextinterface() algorithminterface()
.S‘trategy C teStrategyA C teStrategyB C teStrategyC
p attern oncreteStrategy. oncreteStrategy oncreteStrategy
algorithminterface() algorithminterface() algorithminterface()
\Y 23

Overview of Patterns Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Content Content
Observable Observer
. * | onChange
observerList A

registerObserver
unregisterObserver

notifyChange O EventHandler

e Make design & implementation
decisions about how best to apply onChange
the selected patterns for all observers | L=

onChange()

e Patterns may require slight
modifications for particular contexts

One use of the Observer
Pattern in Android

24

Overview of Patterns Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Context Broad_cast
Receiver
S * | onReceive
observerList A
registerReceiver
unregisterReceiver
. : : sendBroadcast
* Make design & implementation T Sl A
decisions about how best to apply onReceive
the selected patterns for all observers 1 L
: - . onReceive
e Patterns may require modifications 0

for particular contexts A different use of the

Observer Pattern in Android

25

Overview of Patterns Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully, singleton T (niqueinstance == 0)
software developers need to: static instance() ©---1--- “”ﬁgﬁ'gf;g[;g;
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance S/hg/eton p&l’l’@l’l? VS

singletonData ’
Double-Checked
Locking Optimization

: singleton { Pattern
. . : class Singleton
e Make design & implementation public:
P static Singleton *instance () {
decisions about how best to apply e oheck
the selected patterns if (instance_ == 0) {
Guard<Thread Mutex> g(lock);
* Patterns may require modifications IT (instance_ == 0) // Double check
. instance_ = new Singleton;
for particular contexts }
return instance_;
}
private:

static Singleton *iInstance_;
static Thread Mutex lock ;

¥

26

Overview of Patterns Douglas C. Schmidt

Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

- Model-View ~ . , -~ Presentation ~. .~~~
¢ _ N TR
~. Controller . . Abstraction-Confrol §hared REDDS”O%

- - —— — =

- ~. - THalfObject ~. - ~
’ N N \
- lterator 'L _plus Protocol ' Interceptor P

—
— e = T e — = T e ol o = ™
—_ - —_ J—

~ Replicated” ~ , - ~. , - Tomponent ~

_ Ny
~Component Group. Mediator _ - '~ _Configurator_

e =, , - ~Database ~
Layers ~ Access Layer .

— -
e

I
change

notification

i

— —
- =

i
i Observer

PR

.

Y

notification state
]] interface transfer
e Combine with other patterns & 4 N\
implement/integrate with code (7 Dl e e

27

Overview of Patterns Douglas C. Schmidt

Summary
» Patterns support « Patterns can be applied in all
« Design at a more abstract level software lifecycle phases
« Treat many class/object Analysis, design, & reviews
Interactions as a conceptual unit * Implementation &
« Emphasize design gua design, not documentation
(obscure) language features e Testing & optimization
* Provide ideal targets for design * Reuse & refactoring
refactoring » Resist urge to brand everything as
 Variation-oriented design process a pattern
1. Determine which design elements Articulate specific benefits &
can vary demonstrate general
2. ldentify applicable pattern(s) applicability
3. Vary patterns & evaluate trade-offs * e.g., find three different

existing examples from code

4. Repeat... other than your own!

Patterns often equated with OO languages, but can apply to non-OO languages

	Slide Number 1
	Topics Covered in this Module
	Topics Covered in this Module
	Topics Covered in this Module
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Leveraging Recurring Design Structures
	Making Software that’s Robust to Changes
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Parts of a Pattern Description
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Process for Applying Patterns
	Summary

