Overview of Patterns

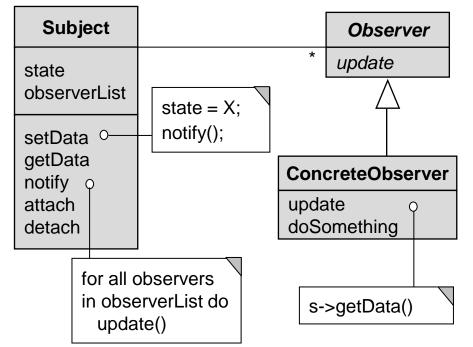
Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

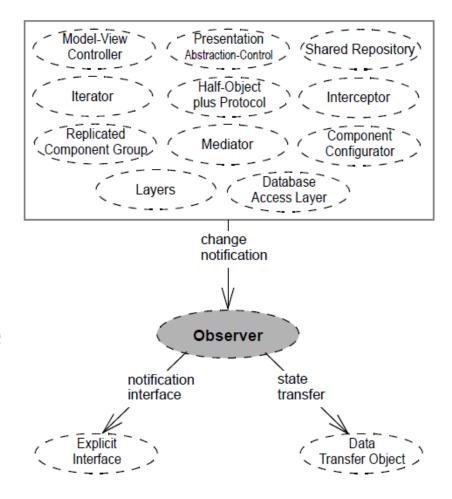
Institute for Software Integrated Systems

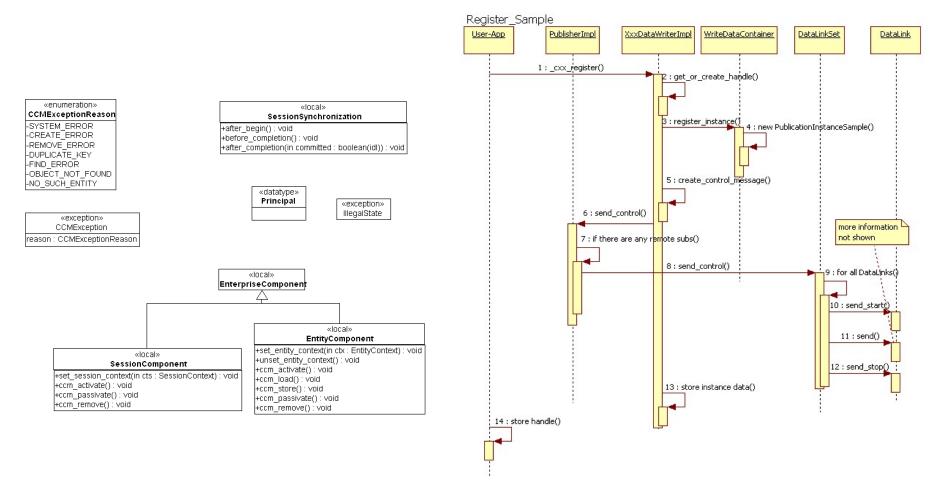
Vanderbilt University Nashville, Tennessee, USA

Topics Covered in this Module


 Motivate the importance of design experience & leveraging recurring design structure to become a master software developer

Topics Covered in this Module


- Motivate the importance of design experience & leveraging recurring design structure to become a master software developer
- Introduce patterns as a means of capturing & applying proven design experience that makes software more robust to change


Topics Covered in this Module

- Motivate the importance of design experience & leveraging recurring design structure to become a master software developer
- Introduce patterns as a means of capturing & applying proven design experience that makes software more robust to change
- Describe a process for successfully applying patterns to software development projects

- Software methods emphasize design notations, such as UML
 - Fine for specification & documentation

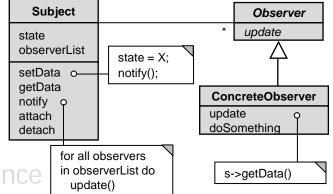
- Software methods emphasize design notations, such as UML
 - Fine for specification & documentation
- But software is more than drawing diagrams
 - Good draftsmen are not necessarily good architects!

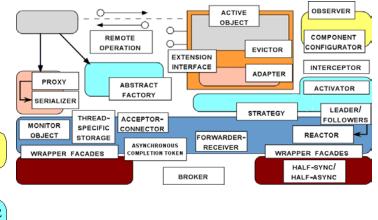
- Software methods emphasize design notations, such as UML
 - Fine for specification & documentation
- But software is more than drawing diagrams
 - Good draftsmen are not necessarily good architects!
- Good software developers rely on design experience
 - At least as important as knowledge of programming languages

- Software methods emphasize design notations, such as UML
 - Fine for specification & documentation
- But software is more than drawing diagrams
 - Good draftsmen are not necessarily good architects!
- Good software developers rely on design experience
 - At least as important as knowledge of programming languages

REAL-TIME ORB CORE

NETWORK


IOP


OS KERNEL

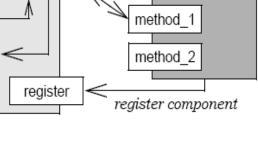
- Design experience can be codified via design & code reuse
 - **Design reuse**: Match problem(s) to design experience & best practices
 - Code reuse: Reify proven designs within a particular set CLIENT operation() CORBA COMPONENT of domains & SERVICES (SERVANT) development IDL SKELETON ORB OoS IDL CONTAINER INTERFACE REAL-TIME environments STUBS PORTABLE OBJECT ADAPTER

OS KERNEL

IOP

Leveraging Recurring Design Structures

Client-side Broker


Network

Well-designed software systems exhibit recurring structures that promote

- Abstraction
- Flexibility
- Reuse
- Quality
- Elegance
- Client

 Proxy
 request
 receive
 receive
 discover client proxy

Client

Application

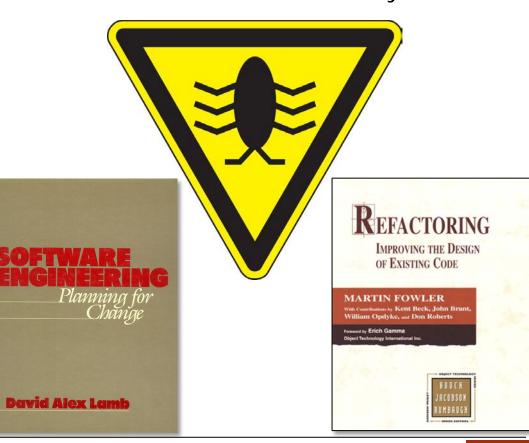
Component

Modularity

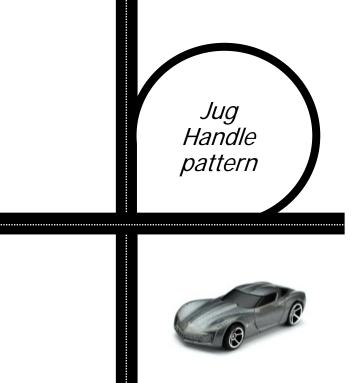
Therein lies valuable design knowledge

Challenge: extracting, documenting, communicating, applying, & preserving this knowledge without undue time, effort, & risk *in the face of continual change to the software!*

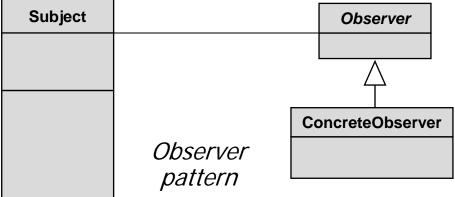
Server-side Broker


invoke

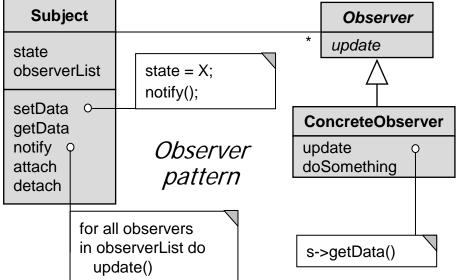
Making Software that's Robust to Changes


- Change is intrinsic to software development as requirements, use-cases, technologies, platforms, & quality goals evolve
- Robustness to change means that software can be modified locally without endangering overall structure
 - It is a quality that reflects ease of evolution & maintenance costs

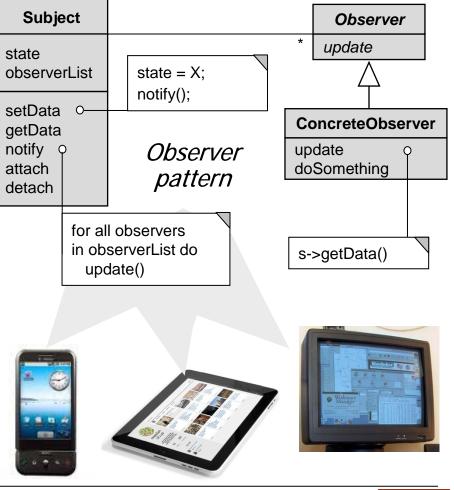
What is needed is a means to address particular design aspects of software & allow controlled variation & evolution of these aspects


- A patterns describes solution(s) to common problem(s) arising within a context by
 - Naming a recurring design structure

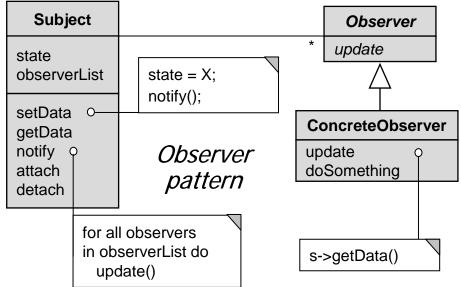
- A patterns describes solution(s) to common problem(s) arising within a context by
 - Naming a recurring design structure

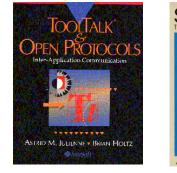


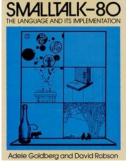
"define a one-to-many dependency between objects so that when one object changes state, all dependents are notified & updated"



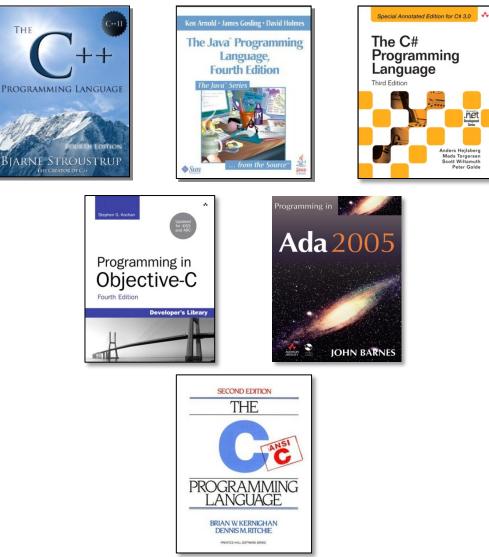
- A patterns describes solution(s) to common problem(s) arising within a context by
 - Naming a recurring design structure
 - Specifying design structure explicitly by identifying key classes/objects*
 - Roles & relationships
 - Dependencies
 - Interactions
 - Conventions

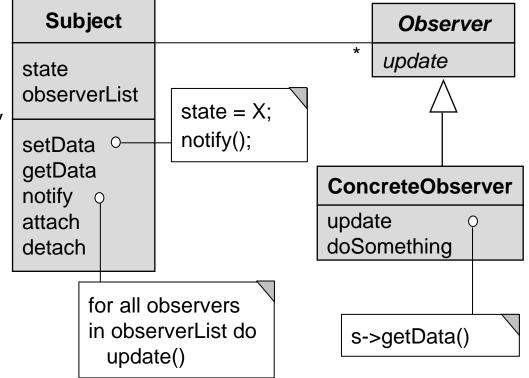

*Interpret "class" & "object" loosely: patterns are for more than OO languages!


- A patterns describes solution(s) to common problem(s) arising within a context by
 - Naming a recurring design structure
 - Specifying design structure explicitly by identifying key classes/objects
 - Roles & relationships
 - Dependencies
 - Interactions
 - Conventions
 - Abstracting from concrete design elements, e.g., problem domain, programming language, vendor, etc.



- A patterns describes solution(s) to common problem(s) arising within a context by
 - Naming a recurring design structure
 - Specifying design structure explicitly by identifying key classes/objects
 - Dependencies
 - Roles & Relationships
 - Interactions
 - Conventions
 - Abstracting from concrete design elements, e.g., problem domain, programming language, vendor, etc.
 - Distilling & codifying knowledge gleaned from successful design experience





• They are independent of programming languages & implementation techniques

- They are independent of programming languages & implementation techniques
- They define "micro-architectures"
 - i.e., a "society of objects"

- They are independent of programming languages & implementation techniques
- They define "micro-architectures"
 - i.e., a "society of objects"
- They aren't code or (concrete) designs, so they must be reified & applied in particular languages

Observer

pattern in Java

public class EventSource extends Observable, implements Runnable {

```
public void run()
```

```
{ /* ... */ notifyObservers(/* ... */); }
```

EventSource eventSource =
 new EventSource();
EventHandler eventHandler =
 new Event_Handler();
eventSource.addObserver(eventHandler);
Thread thread = new Thread(eventSource);
thread.start();

. . .

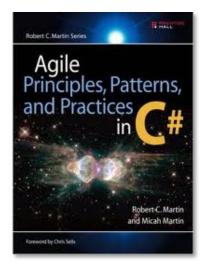
. . .

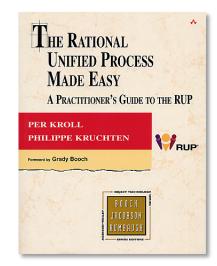
- They are independent of programming languages & implementation techniques
- They define "micro-architectures"
 - i.e., a "society of objects"
- They aren't code or (concrete) designs, so they must be reified & applied in particular languages

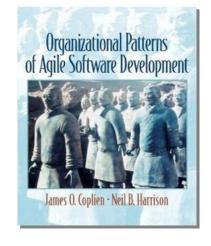
Observer pattern in C++ (uses the GoF Bridge pattern with reference counting to simplify memory management & ensure exception-safe semantics)

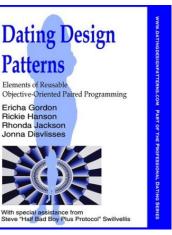
class Event_Source : public Observable, public Runnable { public:

```
virtual void run()
```

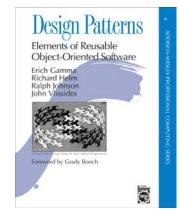

```
{ /* ... */ notify_observers(/* ... */); } ...
```

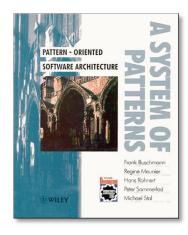

```
Event_Source event_source =
    new Event_Source_Impl;
Event_Handler event_handler =
    new Event_Handler_Impl;
event_source->add_observer(event_handler);
Thread thread = new Thread(event_source);
thread->start();
```

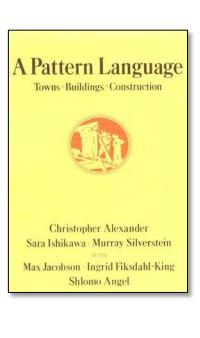



. . .

- They are independent of programming languages & implementation techniques
- They define "micro-architectures"
 - i.e., a "society of objects"
- They aren't code or (concrete) designs, so they must be reified & applied in particular languages
- They are not methods, but can be used an adjunct to other methods
 - e.g., Rational Unified Process, Agile, etc.
 - There are also patterns for organizing effective software development teams & navigating other complex settings

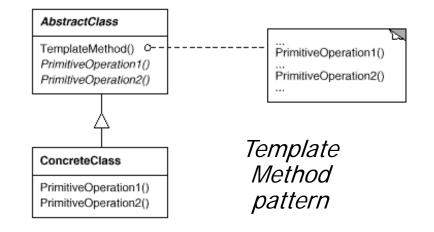


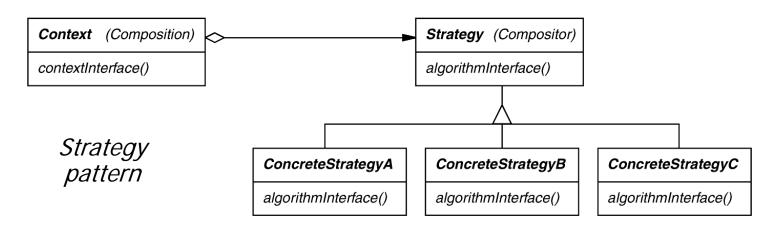


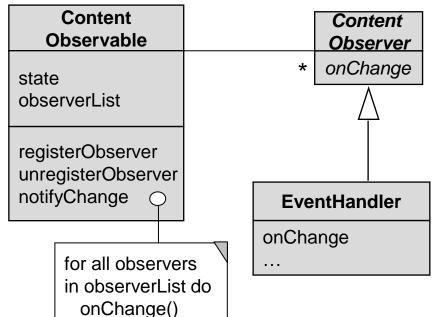


Common Parts of a Pattern Description

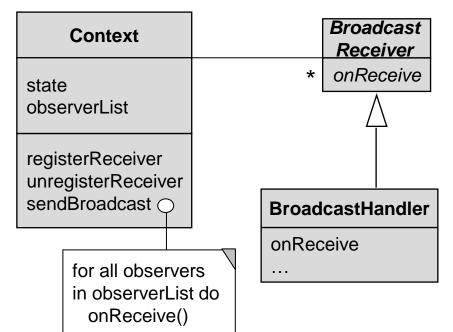
- Name & statement of pattern intent
- Problem addressed by pattern
 - Including "forces" & "applicability"
- Solution
 - Visual & textual descriptions of pattern structure & dynamics
- Consequences
 - Pros & cons of applying the pattern
- Implementation guidance
 - May include source code examples
- Known uses
 - "rule of three"
- Related patterns
 - Tradeoffs between alternative patterns






- To apply patterns successfully, software developers need to:
 - Have broad knowledge of patterns relevant to their domain(s)
 - Evaluate trade-offs & impact of using certain patterns in their software

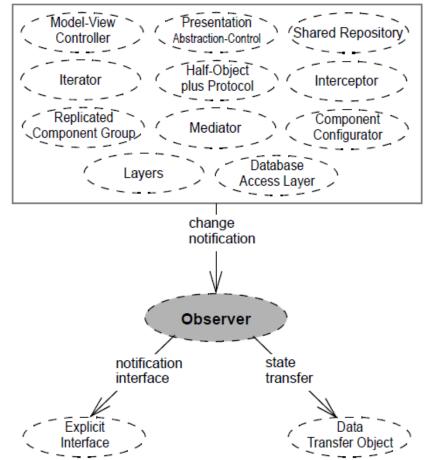
- To apply patterns successfully, software developers need to:
 - Have broad knowledge of patterns relevant to their domain(s)
 - Evaluate trade-offs & impact of using certain patterns in their software
 - Make design & implementation decisions about how best to apply the selected patterns
 - Patterns may require slight modifications for particular contexts



One use of the Observer Pattern in Android

- To apply patterns successfully, software developers need to:
 - Have broad knowledge of patterns relevant to their domain(s)
 - Evaluate trade-offs & impact of using certain patterns in their software
 - Make design & implementation decisions about how best to apply the selected patterns
 - Patterns may require modifications for particular contexts

A different use of the Observer Pattern in Android


- To apply patterns successfully, software developers need to:
 - Have broad knowledge of patterns relevant to their domain(s)
 - Evaluate trade-offs & impact of using certain patterns in their software
 - Make design & implementation decisions about how best to apply the selected patterns
 - Patterns may require modifications for particular contexts

```
Singleton
                        If (uniqueInstance == 0)
                          uniqueInstance =
static instance()
                           new Singleton;
singletonOperation()
                        return uniqueInstance;
getSingletonData()
static uniqueInstance
                      Singleton pattern vs.
singletonData
                      Double-Checked
                      Locking Optimization
                      Pattern
class Singleton {
public:
  static Singleton *instance () {
  // First check
  if (instance_ == 0) {
    Guard<Thread Mutex> g(lock );
       if (instance == 0) // Double check
       instance = new Singleton;
    return instance_;
private:
  static Singleton *instance_;
  static Thread Mutex lock ;
};
```


- To apply patterns successfully, software developers need to:
 - Have broad knowledge of patterns relevant to their domain(s)
 - Evaluate trade-offs & impact of using certain patterns in their software
 - Make design & implementation decisions about how best to apply the selected patterns
 - Patterns may require modifications for particular contexts
 - Combine with other patterns & implement/integrate with code

Summary

- Patterns support
 - Design at a more abstract level
 - Treat many class/object interactions as a conceptual unit
 - Emphasize design *qua* design, not (obscure) language features
 - Provide ideal targets for design refactoring
 - Variation-oriented design process
 - 1. Determine which design elements can vary
 - 2. Identify applicable pattern(s)
 - 3. Vary patterns & evaluate trade-offs

4. Repeat...

- Patterns can be applied in all software lifecycle phases
 - Analysis, design, & reviews
 - Implementation & documentation
 - Testing & optimization
 - Reuse & refactoring
- Resist urge to brand everything as a pattern
 - Articulate specific benefits & demonstrate general applicability
 - e.g., find three different existing examples from code other than your own!

Patterns often equated with OO languages, but can apply to non-OO languages