
Overview of Frameworks: Introduction

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II
Systems Programming for Android

mailto:d.schmidt@vanderbilt.edu

Overview of Frameworks Douglas C. Schmidt

2

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

3

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

4

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

5

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

6

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

7

• Summarize key framework
concepts Domain-

Specific
Functionality
& Structure

Reusable
“Semi-

Complete”
Applications

…

Implement
Pattern

Languages

Extensible
Design &

Code

Inversion
of Control

Framework
Concepts

Module Introduction

Overview of Frameworks Douglas C. Schmidt

8

• Summarize key framework
concepts

• Give examples of
frameworks related to
Android
• developer.android.com

Android frameworks are available in open-source form

Module Introduction

http://developer.android.com/

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II
Systems Programming for Android

Overview of Frameworks: Part 1

mailto:d.schmidt@vanderbilt.edu

Overview of Frameworks Douglas C. Schmidt

10

Learning Objectives of this Module
• Understand why hardware has

historically improved more
consistently than software

Overview of Frameworks Douglas C. Schmidt

11

Application-specific functionality

Networking

Database

Electronic
Trading

Social Media

Mobile
Apps

GUI

Learning Objectives of this Module
• Understand why hardware has

historically improved more
consistently than software

• Recognize key characteristics of
frameworks that help improve
software productivity & quality

We’ll give pithy examples of frameworks from Android to reify key concepts

Overview of Frameworks Douglas C. Schmidt

12

• Processor & network performance has increased by
many orders of magnitude in past decades

1,200 bits/sec to
10+ Gigabits/sec

Hardware == Better, Faster, Cheaper

Single-core 10
Megahertz to 3+
Gigahertz multi-cores

Overview of Frameworks Douglas C. Schmidt

13

• Processor & network performance has increased by
many orders of magnitude in past decades

1,200 bits/sec to
10+ Gigabits/sec

Hardware == Better, Faster, Cheaper

• Extrapolating these trends another decade or so yields
high-performance commoditized hardware infrastructure
• Processors with 100’s1,000’s

of cores
• ~100 Gigabits/sec LANs
• ~100 Megabits/sec wireless
• ~10 Terabits/sec Internet backbone

Single-core 10
Megahertz to 3+
Gigahertz multi-cores

www.dre.vanderbilt.edu/~schmidt/dedicate.html has more on commoditization

http://www.dre.vanderbilt.edu/~schmidt/dedicate.html

Overview of Frameworks Douglas C. Schmidt

14

Software == Buggier, Slower, & More Expensive?

• Unfortunately, software quality &
productivity hasn’t improved as
rapidly or predictably as hardware

Overview of Frameworks Douglas C. Schmidt

15

Software == Buggier, Slower, & More Expensive?

• Unfortunately, software quality &
productivity hasn’t improved as
rapidly or predictably as hardware

• This is particularly problematic for
mission-critical concurrent &
networked software-reliant systems

See www.dre.vanderbilt.edu/~schmidt/comm-lessons.html for more info

http://www.dre.vanderbilt.edu/~schmidt/comm-lessons.html

Overview of Frameworks Douglas C. Schmidt

16

Why Hardware Improves Consistently
Advances in hardware & networks stem largely from maturation

of standardized & reusable interfaces, protocols, & modeling tools

x86 chipsets TCP/IP switches

Overview of Frameworks Douglas C. Schmidt

17

Historically software developers have manually rediscovered & reinvented
“point solutions” that are expensive to develop, integrate, validate, & sustain

Why Software Fails to Improve as Consistently

Proprietary &
Stovepiped

Application &
Infrastructure

Software

Standard/COTS
Hardware &
Networks

In general, software has not been as standardized or reusable as hardware

Customized
Form Factors

Overview of Frameworks Douglas C. Schmidt

18

Why Software Fails to Improve as Consistently

Consequence: Small changes in software/hardware have
a big (negative) impact on system quality & sustainability

In general, software has not been as standardized or reusable as hardware

Proprietary &
Stovepiped

Application &
Infrastructure

Software

Customized
Form Factors

Standard/COTS
Hardware &
Networks

Overview of Frameworks Douglas C. Schmidt

19

A Solution: Software Frameworks

Product
Variant 1

Product
Variant 4

Product
Variant 2

Product
Variant 3

Framework-
based App &
Infrastructure

Software

• Frameworks promote “systematic reuse” by factoring out many general-
purpose & domain-specific services from traditional application responsibility

A framework is an integrated set of software components that collaborate
to provide a reusable architecture for a family of related applications

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries Virtual Machine Runtime

www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html has info on systematic reuse

Customized
Form Factors

Standard/COTS
Hardware &
Networks

http://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

Overview of Frameworks Douglas C. Schmidt

20

Key Characteristics of Frameworks

www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html has more info

Software frameworks
exhibit several key
characteristics that
differentiate them

from other forms of
systematic reuse

http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html

Overview of Frameworks Douglas C. Schmidt

21

Key Characteristics of Frameworks
Application-specific functionality • They exhibit “inversion of

control” via callbacks
• AKA, “Hollywood Principle”

See www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt

http://www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt

Overview of Frameworks Douglas C. Schmidt

22

Key Characteristics of Frameworks
• They exhibit “inversion of

control” via callbacks
• AKA, “Hollywood Principle”

Overview of Frameworks Douglas C. Schmidt

23

Key Characteristics of Frameworks
Application-specific functionality • They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality

Overview of Frameworks Douglas C. Schmidt

24

Key Characteristics of Frameworks
Application-specific functionality • They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality

Database

Electronic
Trading

Social Media

Networking
GUI

Mobile
Apps

Infrastructure
domains

Application
domains

Overview of Frameworks Douglas C. Schmidt

25

Key Characteristics of Frameworks
• They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality
• e.g., abstract &

concrete classes,
control flows, etc.

AsyncTask Params, Progress, Result

Params – Types used in background work
Progress – Types used when indicating progress
Result – Types of result

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Template method

Hook methods

Overview of Frameworks Douglas C. Schmidt

26

Key Characteristics of Frameworks
Application-specific functionality • They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality
• e.g., abstract &

concrete classes,
control flows, etc.

• They are “semi-
complete” applications

Networking

Database

Electronic
Trading

Social Media

Mobile
Apps

GUI

Overview of Frameworks Douglas C. Schmidt

27

Application-specific functionality

Networking

Electronic
Trading

Social Media

Mobile
Apps

GUI

Key Characteristics of Frameworks
• They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality
• e.g., abstract &

concrete classes,
control flows, etc.

• They are “semi-
complete” applications

Database Hook
methods

Overview of Frameworks Douglas C. Schmidt

28

Key Characteristics of Frameworks
• They exhibit “inversion of

control” via callbacks
• They provide

integrated domain-
specific structures
& functionality
• e.g., abstract &

concrete classes,
control flows, etc.

• They are “semi-
complete” applications
• Completing a

framework involves
instantiating objects &
subclassing & overriding
“hook methods”

AsyncTask Params, Progress, Result

DownloadAsyncTask
onPreExecute()
doInBackground()
onPostExecute()

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Overridden
hook methods

Overview of Frameworks Douglas C. Schmidt

29

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)

Overview of Frameworks Douglas C. Schmidt

30

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)
• Particularly for mission-critical

concurrent & networked software

Overview of Frameworks Douglas C. Schmidt

31

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)
• Particularly for mission-critical

concurrent & networked software
• Much cost, effort, & defects stem

from continuous rediscovery &
reinvention of core concepts &
components across software industry

Overview of Frameworks Douglas C. Schmidt

32

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)
• Particularly for mission-critical

concurrent & networked software
• Much cost, effort, & defects stem

from continuous rediscovery &
reinvention of core concepts &
components across software industry

• Frameworks improve productivity &
quality of software development by
• Reifying proven software designs &

implementations in selected domains

Overview of Frameworks Douglas C. Schmidt

33

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)
• Particularly for mission-critical

concurrent & networked software
• Much cost, effort, & defects stem

from continuous rediscovery &
reinvention of core concepts &
components across software industry

• Frameworks improve productivity &
quality of software development by
• Reifying proven software designs &

implementations in selected domains
• Amortizing quality assurance efforts

& artifacts

www.dre.vanderbilt.edu/scoreboard

http://www.dre.vanderbilt.edu/scoreboard

Overview of Frameworks Douglas C. Schmidt

34

Summary
• The quality of software (& the

productivity of software developers)
has historically lagged hardware (&
hardware developers)
• Particularly for mission-critical

concurrent & networked software
• Much cost, effort, & defects stem

from continuous rediscovery &
reinvention of core concepts &
components across software industry

• Frameworks improve productivity &
quality of software development by
• Reifying proven software designs &

implementations in selected domains
• Amortizing quality assurance efforts

& artifacts

We have a long way to go to match hardware engineers use of modeling tools
w3.isis.vanderbilt.edu/projects/gme

http://w3.isis.vanderbilt.edu/projects/gme
http://w3.isis.vanderbilt.edu/projects/gme

Overview of Frameworks: Part 2

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Frameworks Douglas C. Schmidt

36

Learning Objectives of this Module
• Understand how frameworks

compare with other systematic
reuse techniques

Overview of Frameworks Douglas C. Schmidt

37

Learning Objectives of this Module
• Understand how frameworks

compare with other systematic
reuse techniques

• Recognize the different
categories of frameworks

Black-box White-box

Again, we give pithy examples of frameworks from Android to reify key points

Overview of Frameworks Douglas C. Schmidt

38

Comparing Systematic Reuse Techniques
• Class Library Architecture

• Class is a reusable implementation
unit in an OO language

• Classes are typically passive

See en.wikipedia.org/wiki/Library_(computing)#Object_and_class_libraries

ADTs

Strings

Locks

IPC

Math

Local
Invocations

Files

GUI

App-Specific
Functionality

Event
Loop

Glue
Code

http://en.wikipedia.org/wiki/Library_(computing)

Overview of Frameworks Douglas C. Schmidt

39

Comparing Systematic Reuse Techniques

See st-www.cs.illinois.edu/users/johnson/frameworks.html

ADTs

Locks

Strings

Files

Invocations

Reactor

Database

NETWORKING

Application-
Specific
Functionality

Callbacks

GUI

• Class Library Architecture
• Class is a reusable implementation

unit in an OO language
• Classes are typically passive

• Framework Architecture
• Framework is integrated set of classes

that collaborate to form a reusable
architecture for a family of apps

• Frameworks own the event loop(s)

Networking

http://st-www.cs.illinois.edu/users/johnson/frameworks.html

Overview of Frameworks Douglas C. Schmidt

40

Comparing Systematic Reuse Techniques
• Class Library Architecture

• Class is a reusable implementation
unit in an OO language

• Classes are typically passive

• Framework Architecture
• Framework is integrated set of classes

that collaborate to form a reusable
architecture for a family of apps

• Frameworks reify pattern languages

• Component-based & Service-
Oriented Architecture
• Component is an encapsulation unit with

one or more interfaces that provide
clients with access to services

• Components can be deployed &
configured via meta-data contained in
assemblies

 Middleware Bus

Naming

Locking Logging

Events

See www.dre.vanderbilt.edu/~schmidt/report-doc.html for more info

http://www.dre.vanderbilt.edu/~schmidt/report-doc.html

Overview of Frameworks Douglas C. Schmidt

41

Comparing Systematic Reuse Techniques
• Class Library Architecture

• Class is a reusable implementation
unit in an OO language

• Classes are typically passive

• Framework Architecture
• Framework is integrated set of classes

that collaborate to form a reusable
architecture for a family of apps

• Frameworks reify pattern languages

• Component-based & Service-
Oriented Architecture
• Component is an encapsulation unit with

one or more interfaces that provide
clients with access to services

• Components can be deployed &
configured via meta-data contained in
assemblies

Frameworks are generally more
flexible/powerful than other

systematic reuse techniques, but also
more complicated to develop & use

Overview of Frameworks Douglas C. Schmidt

42

Categories of Frameworks
• Black-box frameworks only

require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

Overview of Frameworks Douglas C. Schmidt

43

Categories of Frameworks
• Black-box frameworks only

require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

www.laputan.org/drc/drc.html has more on black-box & white-box frameworks

http://www.laputan.org/drc/drc.html

Overview of Frameworks Douglas C. Schmidt

44

Categories of Frameworks

• Black-box frameworks reply heavily on object composition
patterns, such as Strategy & Decorator

• Each category of OO framework uses different sets of patterns

• Black-box frameworks only
require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

en.wikipedia.org/wiki/Strategy_pattern has more on the Strategy pattern

http://en.wikipedia.org/wiki/Strategy_pattern

Overview of Frameworks Douglas C. Schmidt

45

Categories of Frameworks

• White-box frameworks rely heavily on
inheritance-based extensibility patterns,
such as Template Method & State

• Black-box frameworks only
require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

• Each category of OO framework uses different sets of patterns

en.wikipedia.org/wiki/Template_method has more on Template Method pattern

http://en.wikipedia.org/wiki/Template_method

Overview of Frameworks Douglas C. Schmidt

46

• Each category of OO framework uses different sets of patterns
• Many frameworks fall in between

white-box & black-box categories

Categories of Frameworks
• Black-box frameworks only

require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

Overview of Frameworks Douglas C. Schmidt

47

Categories of Frameworks
• Black-box frameworks only

require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

• Each category of OO framework uses different sets of patterns
• Many frameworks fall in between

white-box & black-box categories

• In general

• White-box frameworks are easier
to develop, but harder to use

Overview of Frameworks Douglas C. Schmidt

48

Categories of Frameworks
• Black-box frameworks only

require understanding external
interfaces of objects
• Framework elements typically

reused by parameterizing &
assembling objects

• White-box frameworks require
understanding the framework
implementation to some degree
• Framework elements typically

reused by subclassing &
overridding

• Each category of OO framework uses different sets of patterns
• Many frameworks fall in between

white-box & black-box categories

• In general

• White-box frameworks are easier
to develop, but harder to use

• Black-box frameworks are harder
to develop, but easier to use

Overview of Frameworks Douglas C. Schmidt

49

White-box Framework: Android AsyncTask
• Android’s AsyncTask

provides a simple white-
box framework to create
long-running operations
that need to communicate
with the UI thread

developer.android.com/reference/android/os/AsyncTask.html has AsyncTask info

: UI
Thread

: My
AsyncTask

: Worker
Runnable

Perform long-
running task

: Default
Executor

Initialization
actions

Template method

execute

onPreExecute
doInBackground

onPostExecute

execute

Display
results in UI

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html

Overview of Frameworks Douglas C. Schmidt

50

AsyncTask
execute
onPreExecute
doInBackground
onProgressUpdate
onPostExecute

Params, Progress, Result

Params – Types used in background work
Progress – Types used when indicating progress
Result – Types of result

DownloadAsyncTask
onPreExecute
doInBackground
onPostExecute

• Android’s AsyncTask
provides a simple white-
box framework to create
long-running operations
that need to communicate
with the UI thread

• Must be subclassed

White-box Framework: Android AsyncTask

Hook methods Template method

Overview of Frameworks Douglas C. Schmidt

51

class DownloadAsyncTask
 extends AsyncTask<String, Integer, Bitmap> {

protected void onPreExecute() {
 dialog.display();
}

protected Bitmap doInBackground(String... url) {
 return downloadImage(url[0]);
}

protected void onPostExecute(Bitmap bitmap) {
 performPostDownloadOperations(bitmap);
 dialog.dismiss();
}

}

Download in background thread

Perform on UI thread

Perform on
UI thread

• Android’s AsyncTask
provides a simple white-
box framework to create
long-running operations
that need to communicate
with the UI thread

• Must be subclassed

• Hook methods can be
overridden

White-box Framework: Android AsyncTask

Overview of Frameworks Douglas C. Schmidt

52

• Android’s AsyncTask
provides a simple white-
box framework to create
long-running operations
that need to communicate
with the UI thread

• Must be subclassed

• Hook methods can be
overridden

• Instance must be created
on the UI thread & can
only be executed once

public class ThreadedDownloadActivity
 extends Activity {
…

public void runAsyncTask(View view) {
final String url =
 urlEditText.getText().toString();

new DownloadAsyncTask().execute(url);

}
…
}

UI thread calls template
method to trigger image
download in a new
AsyncTask

White-box Framework: Android AsyncTask

Overview of Frameworks Douglas C. Schmidt

53

• Android’s AsyncTask
provides a simple black-
box framework for
controlling the # &
behavior of thread(s)
running in background

Black-box Framework: Android AsyncTask

execute

onPreExecute
doInBackground

onPostExecute

: Download
AsyncTask

: Worker
Runnable

: Executor

execute

: Download
Activity

developer.android.com/reference/android/os/AsyncTask.html has AsyncTask info

http://developer.android.com/reference/android/os/AsyncTask.html

Overview of Frameworks Douglas C. Schmidt

54

• Android’s AsyncTask
provides a simple black-
box framework for
controlling the # &
behavior of thread(s)
running in background

• Client can select the
desired Executor

Black-box Framework: Android AsyncTask

: Download
AsyncTask

: Worker
Runnable

: Executor

setDefault
Executor (AsyncTask.THREAD_POOL_EXECUTOR)

: Download
Activity

Allows multiple long-
running tasks to run in

parallel in multiple threads

SERIAL_EXECUTOR,
THREAD_POOL_EXECUTOR,

or custom Executor

doInBackground

execute

onPreExecute

onPostExecute

execute

Overview of Frameworks Douglas C. Schmidt

55

execute

onPreExecute

onPostExecute

execute

• Android’s AsyncTask
provides a simple black-
box framework for
controlling the # &
behavior of thread(s)
running in background

• Client can select the
desired Executor

• Executor treated as a
“black-box”

• i.e., only requires
understanding of
external interfaces

Black-box Framework: Android AsyncTask

www.dre.vanderbilt.edu/~schmidt/PDF/ICCDS.pdf has C++ black-box example

: Download
AsyncTask

: Worker
Runnable

: Executor

setDefault
Executor (AsyncTask.THREAD_POOL_EXECUTOR)

: Download
Activity

doInBackground

Executors can be
plugged in as a

strategy to AsyncTask

http://www.dre.vanderbilt.edu/~schmidt/PDF/ICCDS.pdf

Overview of Frameworks Douglas C. Schmidt

56

Summary
• Frameworks are powerful—but can

be hard to develop & use by app
developers due to inherent/accidental
complexities of various domains

Overview of Frameworks Douglas C. Schmidt

57

Summary
• Frameworks are powerful—but can

be hard to develop & use by app
developers due to inherent/accidental
complexities of various domains
• Patterns (especially pattern

languages) help to alleviate
many framework complexities

www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf has more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

Overview of Frameworks Douglas C. Schmidt

58

Summary
• Frameworks are powerful—but can

be hard to develop & use by app
developers due to inherent/accidental
complexities of various domains
• Patterns (especially pattern

languages) help to alleviate
many framework complexities

• It’s often better to use & customize
“off-the-shelf” frameworks than to
develop frameworks in-house

Overview of Frameworks Douglas C. Schmidt

59

Summary
• Frameworks are powerful—but can

be hard to develop & use by app
developers due to inherent/accidental
complexities of various domains
• Patterns (especially pattern

languages) help to alleviate
many framework complexities

• It’s often better to use & customize
“off-the-shelf” frameworks than to
develop frameworks in-house

• Components & services are easier for
app developers to use, but aren’t as
powerful or flexible as frameworks

Overview of Frameworks Douglas C. Schmidt

60

Summary
• Frameworks are powerful—but can

be hard to develop & use by app
developers due to inherent/accidental
complexities of various domains
• Patterns (especially pattern

languages) help to alleviate
many framework complexities

• It’s often better to use & customize
“off-the-shelf” frameworks than to
develop frameworks in-house

• Components & services are easier for
app developers to use, but aren’t as
powerful or flexible as frameworks
• Successful software projects are

therefore often best organized using
the “funnel” model

Application
Developers

Infrastructure
Developers

Off-the-Shelf
Framework
Developers

Infrastructure
Developers

www.dre.vanderbilt.edu/~schmidt/PDF/Queue-04.pdf has more on frameworks

http://www.dre.vanderbilt.edu/~schmidt/PDF/Queue-04.pdf

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

CS 282 Principles of Operating Systems II
Systems Programming for Android

Overview of Frameworks: Part 3

mailto:d.schmidt@vanderbilt.edu

Overview of Frameworks Douglas C. Schmidt

62

Learning Objectives of this Module
• Present Scope, Commonality, &

Variability (SCV) analysis as a
method for developing &
applying software product-lines
& frameworks

Overview of Frameworks Douglas C. Schmidt

63

Learning Objectives of this Module
• Present Scope, Commonality, &

Variability (SCV) analysis as a
method for developing &
applying software product-lines
& frameworks

• Illustrate the application of SCV
to Android

Overview of Frameworks Douglas C. Schmidt

64

Product
Variant 1

Product
Variant 4

Product
Variant 2

Product
Variant 3

• A software product line (SPL) is a
form of systematic software reuse
• An SPL a set of software-intensive

systems
• These systems share a common,

managed set of features satisfying
the specific needs of a particular
market segment or mission

• They are developed from a
common set of core assets in a
prescribed way

Overview of Software Product-Lines

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries Virtual Machine
Runtime

Overview of Frameworks Douglas C. Schmidt

65

Product
Variant 1

Product
Variant 4

Product
Variant 2

Product
Variant 3

• A software product line (SPL) is a
form of systematic software reuse
• An SPL a set of software-intensive

systems
• These systems share a common,

managed set of features satisfying
the specific needs of a particular
market segment or mission

• They are developed from a
common set of core assets in a
prescribed way

• Frameworks can help define &
improve core SPL assets by factoring
out many reusable general-purpose
& domain-specific services from
application responsibility

Overview of Software Product-Lines

See www.sei.cmu.edu/productlines for more info on software product-lines

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries Virtual Machine
Runtime

http://www.sei.cmu.edu/productlines

Overview of Frameworks Douglas C. Schmidt

66

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

Scope, Commonality, & Variability Analysis

Overview of Frameworks Douglas C. Schmidt

67

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

Scope, Commonality, & Variability Analysis

www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf

http://www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf

Overview of Frameworks Douglas C. Schmidt

68

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

• Often used to guide the
development & application
of software product-lines &
frameworks

Scope, Commonality, & Variability Analysis

Product
Variant 1

Product
Variant 4

Product
Variant 2

Product
Variant 3

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries Virtual Machine
Runtime

Overview of Frameworks Douglas C. Schmidt

69

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

• General method

• Identify common portions of
a domain & define stable
interfaces (fairly easy)

Scope, Commonality, & Variability Analysis

AsyncTask

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Overview of Frameworks Douglas C. Schmidt

70

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

• General method

• Identify common portions of
a domain & define stable
interfaces (fairly easy)

• Identify variable portions of
a domain & define stable
interfaces (harder)

Scope, Commonality, & Variability Analysis

AsyncTask

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Params, Progress, Result

Params – Types used in background work
Progress – Types used when indicating progress
Result – Types of result

DownloadAsyncTask
onPreExecute()
doInBackground()
onPostExecute()

Overview of Frameworks Douglas C. Schmidt

71

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

• General method

• Identify common portions of
a domain & define stable
interfaces (fairly easy)

• Identify variable portions of
a domain & define stable
interfaces (harder)

• Create different implementations
of the variable portions as plug-ins

Scope, Commonality, & Variability Analysis

AsyncTask

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Params, Progress, Result

Params – Types used in background work
Progress – Types used when indicating progress
Result – Types of result

DownloadAsyncTask
onPreExecute()
doInBackground()
onPostExecute()

…
onPreExecute()
doInBackground()
onPostExecute()

Overview of Frameworks Douglas C. Schmidt

72

• Key software product-line & framework structure & behavior can be captured
systematically via Scope, Commonality, & Variability (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain

• General method

• Identify common portions of
a domain & define stable
interfaces (fairly easy)

• Identify variable portions of
a domain & define stable
interfaces (harder)

• Create different implementations
of the variable portions as plug-ins

Scope, Commonality, & Variability Analysis

en.wikipedia.org/wiki/SOLID_(object-oriented_design) has more info

AsyncTask

execute()
onPreExecute()
doInBackground()
onProgressUpdate()
onPostExecute()

Params, Progress, Result

Params – Types used in background work
Progress – Types used when indicating progress
Result – Types of result

DownloadAsyncTask
onPreExecute()
doInBackground()
onPostExecute()

…
onPreExecute()
doInBackground()
onPostExecute()

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Overview of Frameworks Douglas C. Schmidt

73

• Scope defines the domain
& context of Android & its
various frameworks &
components

• e.g.,
• Resource-constrained

mobile devices
• e.g., limited power,

memory, processors,
network, & price
points

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

74

• Scope defines the domain
& context of Android & its
various frameworks &
components

• e.g.,
• Resource-constrained

mobile devices
• e.g., limited power,

memory, processors,
network, & price
points

• Touch-based user
interfaces

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

75

• Scope defines the domain
& context of Android & its
various frameworks &
components

• e.g.,
• Resource-constrained

mobile devices
• e.g., limited power,

memory, processors,
network, & price
points

• Touch-based user
interfaces

• (Largely) open-source, vendor- & hardware-agnostic ecosystem

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

76

• Scope defines the domain
& context of Android & its
various frameworks &
components

• e.g.,
• Resource-constrained

mobile devices
• e.g., limited power,

memory, processors,
network, & price
points

• Touch-based user
interfaces

• (Largely) open-source, vendor- & hardware-agnostic ecosystem
• Focus on installed-base of Java app developers

See developer.android.com for more info on Android

Applying SCV to Android

http://developer.android.com/

Overview of Frameworks Douglas C. Schmidt

77

• Commonalities describe
the attributes common
across all instances of
Android
• Common framework

components
• e.g., Activities,

Services, Content
Providers, &
Broadcast Receivers

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

78

• Commonalities describe
the attributes common
across all instances of
Android
• Common framework

components
• e.g., Activities,

Services, Content
Providers, &
Broadcast Receivers

• Common application
frameworks
• e.g., Activity Manager, Package Manager, Telephony Manager, Location

Manager, Notification Manager, etc.

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

79

• Commonalities describe
the attributes common
across all instances of
Android
• Common framework

components
• e.g., Activities,

Services, Content
Providers, &
Broadcast Receivers

• Common application
frameworks
• e.g., Activity Manager, Package Manager, Telephony Manager, Location

Manager, Notification Manager, etc.
• Common infrastructure

• e.g., Intent framework, Binder, Webkit, Hardware Abstraction Layer, OS
device driver frameworks etc.

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

80

• Variabilities describe
the attributes unique to
different instantiations of
Android

• Product-dependent
components
• e.g., different “look &

feel” variants of
vendor-specific user
interfaces, sensor &
device properties, etc.

Applying SCV to Android

Overview of Frameworks Douglas C. Schmidt

81

• Variabilities describe
the attributes unique to
different instantiations of
Android

• Product-dependent
components
• e.g., different “look &

feel” variants of
vendor-specific user
interfaces, sensor &
device properties, etc.

• Product-dependent
component assemblies
• e.g., different bundled apps, CDMA vs. GSM & different hardware, OS, &

network/bus configurations, etc.

Applying SCV to Android

SCV can also be applied recursively for all the Android frameworks & layers

Overview of Frameworks Douglas C. Schmidt

82

Summary
• Scope, Commonality, & Variability

(SCV) analysis is an advanced
systematic reuse technique

• It helps developers alleviate
problems associated with
maintaining many versions
of the same product that have
large amounts of similar software
created to satisfy new & diverse
requirements

Product
Variant 1

Product
Variant 4

Product
Variant 2

Product
Variant 3

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries Virtual Machine
Runtime

Overview of Frameworks Douglas C. Schmidt

83

Summary
• Scope, Commonality, & Variability

(SCV) analysis is an advanced
systematic reuse technique

• It helps developers alleviate
problems associated with
maintaining many versions
of the same product that have
large amounts of similar software
created to satisfy new & diverse
requirements

• The frameworks in Android form
software product-lines that enable
systematic software reuse across a
wide range of apps & infrastructure
platforms

	Slide Number 1
	Module Introduction
	Module Introduction
	Module Introduction
	Module Introduction
	Module Introduction
	Module Introduction
	Module Introduction
	Slide Number 9
	Learning Objectives of this Module
	Learning Objectives of this Module
	Hardware == Better, Faster, Cheaper
	Hardware == Better, Faster, Cheaper
	Software == Buggier, Slower, & More Expensive?
	Software == Buggier, Slower, & More Expensive?
	Why Hardware Improves Consistently
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Key Characteristics of Frameworks
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 35
	Learning Objectives of this Module
	Learning Objectives of this Module
	Comparing Systematic Reuse Techniques
	Comparing Systematic Reuse Techniques
	Comparing Systematic Reuse Techniques
	Comparing Systematic Reuse Techniques
	Categories of Frameworks
	Categories of Frameworks
	Categories of Frameworks
	Categories of Frameworks
	Categories of Frameworks
	Categories of Frameworks
	Categories of Frameworks
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 61
	Learning Objectives of this Module
	Learning Objectives of this Module
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Applying SCV to Android
	Summary
	Summary

