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• Summarize key framework  
concepts  

• Give examples of  
frameworks related to  
Android 
• developer.android.com  

 

Android frameworks are available in open-source form 

Module Introduction 

http://developer.android.com/
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Learning Objectives of this Module 
• Understand why hardware has 

historically improved more 
consistently than software 
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Application-specific functionality  

Networking  

Database 

Electronic 
Trading 

Social Media 

Mobile 
Apps 

GUI  

Learning Objectives of this Module 
• Understand why hardware has 

historically improved more 
consistently than software 

• Recognize key characteristics of  
frameworks that help improve 
software productivity & quality 

 

 

We’ll give pithy examples of frameworks from Android to reify key concepts 
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• Processor & network performance has increased by 
many orders of magnitude in past decades 

1,200 bits/sec to 
10+ Gigabits/sec 

Hardware == Better, Faster, Cheaper 

Single-core 10 
Megahertz to 3+ 
Gigahertz multi-cores 
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• Processor & network performance has increased by 
many orders of magnitude in past decades 

1,200 bits/sec to 
10+ Gigabits/sec 

Hardware == Better, Faster, Cheaper 

• Extrapolating these trends another decade or so yields 
high-performance commoditized hardware infrastructure 
• Processors with 100’s1,000’s  

of cores 
• ~100 Gigabits/sec LANs 
• ~100 Megabits/sec wireless 
• ~10 Terabits/sec Internet backbone 

Single-core 10 
Megahertz to 3+ 
Gigahertz multi-cores 

www.dre.vanderbilt.edu/~schmidt/dedicate.html has more on commoditization 

http://www.dre.vanderbilt.edu/~schmidt/dedicate.html
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Software == Buggier, Slower, & More Expensive? 

• Unfortunately, software quality & 
productivity hasn’t improved as 
rapidly or predictably as hardware 
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Software == Buggier, Slower, & More Expensive? 

• Unfortunately, software quality & 
productivity hasn’t improved as 
rapidly or predictably as hardware 

• This is particularly problematic for 
mission-critical concurrent & 
networked software-reliant systems 

See www.dre.vanderbilt.edu/~schmidt/comm-lessons.html for more info 

http://www.dre.vanderbilt.edu/~schmidt/comm-lessons.html


Overview of Frameworks Douglas C. Schmidt 

16 

Why Hardware Improves Consistently 
Advances in hardware & networks stem largely from maturation 

of standardized & reusable interfaces, protocols, & modeling tools 

x86 chipsets TCP/IP switches 
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Historically software developers have manually rediscovered & reinvented 
“point solutions” that are expensive to develop, integrate, validate, & sustain 

Why Software Fails to Improve as Consistently 

Proprietary & 
Stovepiped 

Application & 
Infrastructure 

Software 

Standard/COTS 
Hardware & 
Networks 

In general, software has not been as standardized or reusable as hardware 

Customized 
Form Factors 
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Why Software Fails to Improve as Consistently 

Consequence: Small changes in software/hardware have 
a big (negative) impact on system quality & sustainability 

In general, software has not been as standardized or reusable as hardware 

Proprietary & 
Stovepiped 

Application & 
Infrastructure 

Software 

Customized 
Form Factors 

Standard/COTS 
Hardware & 
Networks 
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A Solution: Software Frameworks 

Product 
Variant 1 

Product 
Variant 4 

Product 
Variant 2 

Product 
Variant 3 

Framework- 
based App & 
Infrastructure 

Software 

• Frameworks promote “systematic reuse” by factoring out many general- 
purpose & domain-specific services from traditional application responsibility  

A framework is an integrated set of software components that collaborate 
to provide a reusable architecture for a family of related applications 

Application Frameworks 

Operating System Kernel 

Bundled & Third-Party Apps 

System Libraries Virtual Machine Runtime 

www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html has info on systematic reuse 

Customized 
Form Factors 

Standard/COTS 
Hardware & 
Networks 

http://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html
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Key Characteristics of Frameworks 

www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html has more info 

Software frameworks 
exhibit several key 
characteristics that 
differentiate them 

from other forms of 
systematic reuse 

http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html
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Key Characteristics of Frameworks 
Application-specific functionality  • They exhibit “inversion of 

control” via callbacks 
• AKA, “Hollywood Principle” 

 
 

See www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt  

http://www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt
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Key Characteristics of Frameworks 
• They exhibit “inversion of 

control” via callbacks 
• AKA, “Hollywood Principle” 
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Key Characteristics of Frameworks 
Application-specific functionality  • They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
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Key Characteristics of Frameworks 
Application-specific functionality  • They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
 

Database 

Electronic 
Trading 

Social Media 

Networking  
GUI  

Mobile 
Apps 

Infrastructure 
domains 

Application 
domains 
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Key Characteristics of Frameworks 
• They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
• e.g., abstract &  

concrete classes,  
control flows, etc. 

 
 

AsyncTask Params, Progress, Result  

Params – Types used in background work 
Progress – Types used when indicating progress 
Result – Types of result 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 

Template method 

Hook methods 
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Key Characteristics of Frameworks 
Application-specific functionality  • They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
• e.g., abstract &  

concrete classes,  
control flows, etc. 

• They are “semi- 
complete” applications 

 
 

Networking  

Database 

Electronic 
Trading 

Social Media 

Mobile 
Apps 

GUI  
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Application-specific functionality  

Networking  

Electronic 
Trading 

Social Media 

Mobile 
Apps 

GUI  

Key Characteristics of Frameworks 
• They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
• e.g., abstract &  

concrete classes,  
control flows, etc. 

• They are “semi- 
complete” applications 

 
 

Database Hook 
methods 
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Key Characteristics of Frameworks 
• They exhibit “inversion of 

control” via callbacks 
• They provide  

integrated domain- 
specific structures  
& functionality 
• e.g., abstract &  

concrete classes,  
control flows, etc. 

• They are “semi- 
complete” applications 
• Completing a 

framework involves 
instantiating objects & 
subclassing & overriding 
“hook methods” 

 
 

AsyncTask Params, Progress, Result  

DownloadAsyncTask 
onPreExecute() 
doInBackground() 
onPostExecute() 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 

Overridden 
hook methods 
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Summary 
• The quality of software (& the 

productivity of software developers) 
has historically lagged hardware (& 
hardware developers) 
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Summary 
• The quality of software (& the  

productivity of software developers)  
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hardware developers) 
• Particularly for mission-critical 

concurrent & networked software 
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components across software industry 

• Frameworks improve productivity & 
quality of software development by  
• Reifying proven software designs & 

implementations in selected domains 
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Summary 
• The quality of software (& the  

productivity of software developers)  
has historically lagged hardware (& 
hardware developers) 
• Particularly for mission-critical 

concurrent & networked software 
• Much cost, effort, & defects stem 

from continuous rediscovery & 
reinvention of core concepts & 
components across software industry 

• Frameworks improve productivity &  
quality of software development by  
• Reifying proven software designs & 

implementations in selected domains 
• Amortizing quality assurance efforts  

& artifacts 

www.dre.vanderbilt.edu/scoreboard  

http://www.dre.vanderbilt.edu/scoreboard
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Summary 
• The quality of software (& the  

productivity of software developers)  
has historically lagged hardware (& 
hardware developers) 
• Particularly for mission-critical 

concurrent & networked software 
• Much cost, effort, & defects stem 

from continuous rediscovery & 
reinvention of core concepts & 
components across software industry 

• Frameworks improve productivity &  
quality of software development by  
• Reifying proven software designs & 

implementations in selected domains 
• Amortizing quality assurance efforts  

& artifacts 

We have a long way to go to match hardware engineers use of modeling tools 
w3.isis.vanderbilt.edu/projects/gme  

http://w3.isis.vanderbilt.edu/projects/gme
http://w3.isis.vanderbilt.edu/projects/gme
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Learning Objectives of this Module 
• Understand how frameworks 

compare with other systematic 
reuse techniques 
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Learning Objectives of this Module 
• Understand how frameworks 

compare with other systematic 
reuse techniques 

• Recognize the different  
categories of frameworks 

 

Black-box White-box 

Again, we give pithy examples of frameworks from Android to reify key points 
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Comparing Systematic Reuse Techniques 
• Class Library Architecture 

• Class is a reusable implementation  
unit in an OO language 

• Classes are typically passive 

See en.wikipedia.org/wiki/Library_(computing)#Object_and_class_libraries  

ADTs 

Strings 

Locks 

IPC 

Math 

Local 
Invocations 

Files 

GUI 

App-Specific 
Functionality 

Event 
Loop 

Glue 
Code 

http://en.wikipedia.org/wiki/Library_(computing)
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Comparing Systematic Reuse Techniques 

See st-www.cs.illinois.edu/users/johnson/frameworks.html  

ADTs 

Locks 

Strings 

Files 

Invocations 

Reactor  

Database 

NETWORKING 

Application- 
Specific 
Functionality 

Callbacks 

GUI 

• Class Library Architecture 
• Class is a reusable implementation  

unit in an OO language 
• Classes are typically passive 

• Framework Architecture 
• Framework is integrated set of classes 

that collaborate to form a reusable 
architecture for a family of apps 

• Frameworks own the event loop(s) 

Networking 

http://st-www.cs.illinois.edu/users/johnson/frameworks.html
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Comparing Systematic Reuse Techniques 
• Class Library Architecture 

• Class is a reusable implementation  
unit in an OO language 

• Classes are typically passive 

• Framework Architecture 
• Framework is integrated set of classes 

that collaborate to form a reusable 
architecture for a family of apps 

• Frameworks reify pattern languages 

• Component-based & Service-
Oriented Architecture  
• Component is an encapsulation unit with 

one or more interfaces that provide 
clients with access to services 

• Components can be deployed & 
configured via meta-data contained in 
assemblies 

 Middleware Bus 

Naming 

Locking Logging 

Events 

See www.dre.vanderbilt.edu/~schmidt/report-doc.html for more info  

http://www.dre.vanderbilt.edu/~schmidt/report-doc.html


Overview of Frameworks Douglas C. Schmidt 

41 

Comparing Systematic Reuse Techniques 
• Class Library Architecture 

• Class is a reusable implementation  
unit in an OO language 

• Classes are typically passive 

• Framework Architecture 
• Framework is integrated set of classes 

that collaborate to form a reusable 
architecture for a family of apps 

• Frameworks reify pattern languages 

• Component-based & Service-
Oriented Architecture  
• Component is an encapsulation unit with 

one or more interfaces that provide 
clients with access to services 

• Components can be deployed & 
configured via meta-data contained in 
assemblies 

Frameworks are generally more 
flexible/powerful than other 

systematic reuse techniques, but also 
more complicated to develop & use 
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Categories of Frameworks 
• Black-box frameworks only 

require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 
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Categories of Frameworks 
• Black-box frameworks only 

require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 

www.laputan.org/drc/drc.html has more on black-box & white-box frameworks 

http://www.laputan.org/drc/drc.html
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Categories of Frameworks 

• Black-box frameworks reply heavily on object composition 
patterns, such as Strategy & Decorator 

• Each category of OO framework uses different sets of patterns 

• Black-box frameworks only 
require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 

en.wikipedia.org/wiki/Strategy_pattern has more on the Strategy pattern 

http://en.wikipedia.org/wiki/Strategy_pattern


Overview of Frameworks Douglas C. Schmidt 

45 

Categories of Frameworks 

• White-box frameworks rely heavily on 
inheritance-based extensibility patterns, 
such as Template Method & State 

• Black-box frameworks only 
require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 

• Each category of OO framework uses different sets of patterns 

en.wikipedia.org/wiki/Template_method has more on Template Method pattern 

http://en.wikipedia.org/wiki/Template_method
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• Each category of OO framework uses different sets of patterns 
• Many frameworks fall in between  

white-box & black-box categories 
 

Categories of Frameworks 
• Black-box frameworks only 

require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 
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Categories of Frameworks 
• Black-box frameworks only 

require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 

• Each category of OO framework uses different sets of patterns 
• Many frameworks fall in between  

white-box & black-box categories 

• In general 

• White-box frameworks are easier  
to develop, but harder to use 
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Categories of Frameworks 
• Black-box frameworks only 

require understanding external 
interfaces of objects 
• Framework elements typically 

reused by parameterizing & 
assembling objects 

• White-box frameworks require 
understanding the framework 
implementation to some degree 
• Framework elements typically 

reused by subclassing & 
overridding 

• Each category of OO framework uses different sets of patterns 
• Many frameworks fall in between  

white-box & black-box categories 

• In general 

• White-box frameworks are easier  
to develop, but harder to use 

• Black-box frameworks are harder  
to develop, but easier to use 
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White-box Framework: Android AsyncTask 
• Android’s AsyncTask 

provides a simple white-
box framework to create 
long-running operations 
that need to communicate 
with the UI thread 

developer.android.com/reference/android/os/AsyncTask.html has AsyncTask info  

: UI 
Thread 

: My 
AsyncTask 

: Worker 
Runnable 

Perform long-
running task 

: Default 
Executor 

Initialization 
actions 

Template method 

execute 

onPreExecute 
doInBackground 

onPostExecute 

execute 

Display 
results in UI 

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
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AsyncTask 
execute 
onPreExecute 
doInBackground 
onProgressUpdate 
onPostExecute 

Params, Progress, Result  

Params – Types used in background work 
Progress – Types used when indicating progress 
Result – Types of result 

DownloadAsyncTask 
onPreExecute 
doInBackground 
onPostExecute 

• Android’s AsyncTask 
provides a simple white-
box framework to create 
long-running operations 
that need to communicate 
with the UI thread 

• Must be subclassed  

White-box Framework: Android AsyncTask 

Hook methods Template method 
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class DownloadAsyncTask  
       extends AsyncTask<String, Integer, Bitmap> { 

protected void onPreExecute() {  
  dialog.display(); 
} 

protected Bitmap doInBackground(String... url) { 
  return downloadImage(url[0]); 
} 

protected void onPostExecute(Bitmap bitmap) { 
  performPostDownloadOperations(bitmap); 
  dialog.dismiss(); 
} 

} 

Download in background thread 

Perform on UI thread 

Perform on 
UI thread 

• Android’s AsyncTask 
provides a simple white-
box framework to create 
long-running operations 
that need to communicate 
with the UI thread 

• Must be subclassed  

• Hook methods can be 
overridden 

White-box Framework: Android AsyncTask 



Overview of Frameworks Douglas C. Schmidt 

52 

• Android’s AsyncTask 
provides a simple white-
box framework to create 
long-running operations 
that need to communicate 
with the UI thread 

• Must be subclassed  

• Hook methods can be 
overridden 

• Instance must be created 
on the UI thread & can 
only be executed once 

public class ThreadedDownloadActivity  
                 extends Activity { 
… 

public void runAsyncTask(View view) { 
final String url =  
          urlEditText.getText().toString(); 

 
new DownloadAsyncTask().execute(url); 

} 
… 
} 

UI thread calls template 
method to trigger image 
download in a new 
AsyncTask 

White-box Framework: Android AsyncTask 
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• Android’s AsyncTask 
provides a simple black-
box framework for 
controlling the # & 
behavior of thread(s) 
running in background 

Black-box Framework: Android AsyncTask 

execute 

onPreExecute 
doInBackground 

onPostExecute 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

execute 

: Download 
Activity 

developer.android.com/reference/android/os/AsyncTask.html has AsyncTask info  

http://developer.android.com/reference/android/os/AsyncTask.html
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• Android’s AsyncTask 
provides a simple black-
box framework for 
controlling the # & 
behavior of thread(s) 
running in background 

• Client can select the 
desired Executor 

Black-box Framework: Android AsyncTask 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

: Download 
Activity 

Allows multiple long-
running tasks to run in 

parallel in multiple threads 

SERIAL_EXECUTOR, 
THREAD_POOL_EXECUTOR, 

or custom Executor 

doInBackground 

execute 

onPreExecute 

onPostExecute 

execute 
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execute 

onPreExecute 

onPostExecute 

execute 

• Android’s AsyncTask  
provides a simple black- 
box framework for  
controlling the # &  
behavior of thread(s)  
running in background 

• Client can select the  
desired Executor 

• Executor treated as a  
“black-box” 

• i.e., only requires  
understanding of  
external interfaces 

Black-box Framework: Android AsyncTask 

www.dre.vanderbilt.edu/~schmidt/PDF/ICCDS.pdf has C++ black-box example 

: Download 
AsyncTask 

: Worker 
Runnable 

: Executor 
 

setDefault 
Executor (AsyncTask.THREAD_POOL_EXECUTOR) 

: Download 
Activity 

doInBackground 

Executors can be 
plugged in as a 

strategy to AsyncTask 

http://www.dre.vanderbilt.edu/~schmidt/PDF/ICCDS.pdf
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Summary 
• Frameworks are powerful—but can  

be hard to develop & use by app 
developers due to inherent/accidental 
complexities of various domains 
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Summary 
• Frameworks are powerful—but can  

be hard to develop & use by app 
developers due to inherent/accidental 
complexities of various domains 
• Patterns (especially pattern 

languages) help to alleviate  
many framework complexities 

 

www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf has more info 

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
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Summary 
• Frameworks are powerful—but can  

be hard to develop & use by app 
developers due to inherent/accidental 
complexities of various domains 
• Patterns (especially pattern 

languages) help to alleviate  
many framework complexities 

• It’s often better to use & customize 
“off-the-shelf” frameworks than to 
develop frameworks in-house  
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Summary 
• Frameworks are powerful—but can  

be hard to develop & use by app 
developers due to inherent/accidental 
complexities of various domains 
• Patterns (especially pattern 

languages) help to alleviate  
many framework complexities 

• It’s often better to use & customize 
“off-the-shelf” frameworks than to 
develop frameworks in-house  

• Components & services are easier for 
app developers to use, but aren’t as 
powerful or flexible as frameworks 
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Summary 
• Frameworks are powerful—but can  

be hard to develop & use by app  
developers due to inherent/accidental 
complexities of various domains 
• Patterns (especially pattern  

languages) help to alleviate  
many framework complexities 

• It’s often better to use & customize  
“off-the-shelf” frameworks than to 
develop frameworks in-house  

• Components & services are easier for 
app developers to use, but aren’t as 
powerful or flexible as frameworks 
• Successful software projects are 

therefore often best organized using 
the “funnel” model 
 

 

Application 
Developers 

Infrastructure 
Developers 

Off-the-Shelf 
Framework 
Developers 

Infrastructure 
Developers 

www.dre.vanderbilt.edu/~schmidt/PDF/Queue-04.pdf has more on frameworks 

http://www.dre.vanderbilt.edu/~schmidt/PDF/Queue-04.pdf
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Learning Objectives of this Module 
• Present Scope, Commonality, & 

Variability (SCV) analysis as a 
method for developing & 
applying software product-lines 
& frameworks 
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Learning Objectives of this Module 
• Present Scope, Commonality, & 

Variability (SCV) analysis as a 
method for developing & 
applying software product-lines 
& frameworks 

• Illustrate the application of SCV 
to Android 
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Product 
Variant 1 

Product 
Variant 4 

Product 
Variant 2 

Product 
Variant 3 

• A software product line (SPL) is a  
form of systematic software reuse 
• An SPL a set of software-intensive 

systems  
• These systems share a common, 

managed set of features satisfying 
the specific needs of a particular 
market segment or mission  

• They are developed from a 
common set of core assets in a 
prescribed way 

Overview of Software Product-Lines 

Application Frameworks 

Operating System Kernel 

Bundled & Third-Party Apps 

System Libraries Virtual Machine 
Runtime 
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Product 
Variant 1 

Product 
Variant 4 

Product 
Variant 2 

Product 
Variant 3 

• A software product line (SPL) is a  
form of systematic software reuse 
• An SPL a set of software-intensive 

systems  
• These systems share a common, 

managed set of features satisfying 
the specific needs of a particular 
market segment or mission  

• They are developed from a 
common set of core assets in a 
prescribed way 

• Frameworks can help define & 
improve core SPL assets by factoring 
out many reusable general-purpose 
& domain-specific services from 
application responsibility 

Overview of Software Product-Lines 

See www.sei.cmu.edu/productlines for more info on software product-lines 

Application Frameworks 

Operating System Kernel 

Bundled & Third-Party Apps 

System Libraries Virtual Machine 
Runtime 

http://www.sei.cmu.edu/productlines
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

Scope, Commonality, & Variability Analysis 
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

Scope, Commonality, & Variability Analysis 

www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf  

http://www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

• Often used to guide the  
development & application  
of software product-lines &  
frameworks 

Scope, Commonality, & Variability Analysis 

Product 
Variant 1 

Product 
Variant 4 

Product 
Variant 2 

Product 
Variant 3 

Application Frameworks 

Operating System Kernel 

Bundled & Third-Party Apps 

System Libraries Virtual Machine 
Runtime 
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

• General method 

• Identify common portions of  
a domain & define stable  
interfaces (fairly easy) 

Scope, Commonality, & Variability Analysis 

AsyncTask 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

• General method 

• Identify common portions of  
a domain & define stable  
interfaces (fairly easy) 

• Identify variable portions of 
a domain & define stable  
interfaces (harder) 

Scope, Commonality, & Variability Analysis 

AsyncTask 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 

Params, Progress, Result  

Params – Types used in background work 
Progress – Types used when indicating progress 
Result – Types of result 

DownloadAsyncTask 
onPreExecute() 
doInBackground() 
onPostExecute() 
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

• General method 

• Identify common portions of  
a domain & define stable  
interfaces (fairly easy) 

• Identify variable portions of 
a domain & define stable  
interfaces (harder) 

• Create different implementations 
of the variable portions as plug-ins  

Scope, Commonality, & Variability Analysis 

AsyncTask 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 

Params, Progress, Result  

Params – Types used in background work 
Progress – Types used when indicating progress 
Result – Types of result 

DownloadAsyncTask 
onPreExecute() 
doInBackground() 
onPostExecute() 

… 
onPreExecute() 
doInBackground() 
onPostExecute() 
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• Key software product-line & framework structure & behavior can be captured 
systematically via Scope, Commonality, & Variability (SCV) analysis 

• This process can be applied  
to identify commonalities &  
variabilities in a domain 

• General method 

• Identify common portions of  
a domain & define stable  
interfaces (fairly easy) 

• Identify variable portions of 
a domain & define stable  
interfaces (harder) 

• Create different implementations 
of the variable portions as plug-ins  

Scope, Commonality, & Variability Analysis 

en.wikipedia.org/wiki/SOLID_(object-oriented_design) has more info 

AsyncTask 

execute() 
onPreExecute() 
doInBackground() 
onProgressUpdate() 
onPostExecute() 

Params, Progress, Result  

Params – Types used in background work 
Progress – Types used when indicating progress 
Result – Types of result 

DownloadAsyncTask 
onPreExecute() 
doInBackground() 
onPostExecute() 

… 
onPreExecute() 
doInBackground() 
onPostExecute() 

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
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• Scope defines the domain  
& context of Android & its 
various frameworks & 
components 

• e.g., 
• Resource-constrained  

mobile devices 
• e.g., limited power,  

memory, processors,  
network, & price  
points 

Applying SCV to Android 
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• Scope defines the domain  
& context of Android & its 
various frameworks & 
components 

• e.g., 
• Resource-constrained  

mobile devices 
• e.g., limited power,  

memory, processors,  
network, & price  
points 

• Touch-based user  
interfaces 

Applying SCV to Android 



Overview of Frameworks Douglas C. Schmidt 

75 

• Scope defines the domain  
& context of Android & its 
various frameworks & 
components 

• e.g., 
• Resource-constrained  

mobile devices 
• e.g., limited power,  

memory, processors,  
network, & price  
points 

• Touch-based user  
interfaces 

• (Largely) open-source, vendor- & hardware-agnostic ecosystem 

Applying SCV to Android 
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• Scope defines the domain  
& context of Android & its 
various frameworks & 
components 

• e.g., 
• Resource-constrained  

mobile devices 
• e.g., limited power,  

memory, processors,  
network, & price  
points 

• Touch-based user  
interfaces 

• (Largely) open-source, vendor- & hardware-agnostic ecosystem 
• Focus on installed-base of Java app developers 

See developer.android.com for more info on Android 

Applying SCV to Android 

http://developer.android.com/
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• Commonalities describe  
the attributes common  
across all instances of  
Android 
• Common framework 

components 
• e.g., Activities,  

Services, Content  
Providers, &  
Broadcast Receivers 

Applying SCV to Android 
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• Commonalities describe  
the attributes common  
across all instances of  
Android 
• Common framework 

components 
• e.g., Activities,  

Services, Content  
Providers, &  
Broadcast Receivers 

• Common application  
frameworks 
• e.g., Activity Manager, Package Manager, Telephony Manager, Location 

Manager, Notification Manager, etc. 

Applying SCV to Android 
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• Commonalities describe  
the attributes common  
across all instances of  
Android 
• Common framework 

components 
• e.g., Activities,  

Services, Content  
Providers, &  
Broadcast Receivers 

• Common application  
frameworks 
• e.g., Activity Manager, Package Manager, Telephony Manager, Location 

Manager, Notification Manager, etc. 
• Common infrastructure 

• e.g., Intent framework, Binder, Webkit, Hardware Abstraction Layer, OS 
device driver frameworks etc. 
 

Applying SCV to Android 



Overview of Frameworks Douglas C. Schmidt 

80 

• Variabilities describe  
the attributes unique to  
different instantiations of  
Android 

• Product-dependent  
components 
• e.g., different “look &  

feel” variants of  
vendor-specific user  
interfaces, sensor & 
device properties, etc. 

Applying SCV to Android 
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• Variabilities describe  
the attributes unique to  
different instantiations of  
Android 

• Product-dependent  
components 
• e.g., different “look &  

feel” variants of  
vendor-specific user  
interfaces, sensor & 
device properties, etc. 

• Product-dependent  
component assemblies 
• e.g., different bundled apps, CDMA vs. GSM & different hardware, OS, & 

network/bus configurations, etc.  

Applying SCV to Android 

SCV can also be applied recursively for all the Android frameworks & layers 
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Summary 
• Scope, Commonality, & Variability 

(SCV) analysis is an advanced 
systematic reuse technique  

• It helps developers alleviate 
problems associated with  
maintaining many versions  
of the same product that have  
large amounts of similar software 
created to satisfy new & diverse 
requirements 

 

 

 

Product 
Variant 1 

Product 
Variant 4 

Product 
Variant 2 

Product 
Variant 3 

Application Frameworks 

Operating System Kernel 

Bundled & Third-Party Apps 

System Libraries Virtual Machine 
Runtime 
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Summary 
• Scope, Commonality, & Variability 

(SCV) analysis is an advanced 
systematic reuse technique  

• It helps developers alleviate 
problems associated with  
maintaining many versions  
of the same product that have  
large amounts of similar software 
created to satisfy new & diverse 
requirements 

• The frameworks in Android form 
software product-lines that enable  
systematic software reuse across a 
wide range of apps & infrastructure 
platforms 
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