
Overview of Java FutureTask
Douglas C. Schmidt

    d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the need for the Future pattern 

& Java Future interface
• Recognize the lifecycle of a Future & human

known uses of the Future pattern
• Know the key methods in the 

modern Java Future interface
• Learn how to implement a Future via

the FutureTask class
• FutureTask conveys the result from a 

Thread running an async computation to a 
Thread that wants to process the result

See javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html


3

Overview of
Java FutureTask



4

Overview of Java FutureTask
• The Java Future is an interface, so it must be 

implemented by a class before it can be used

See 20/docs/api/java.base/java/util/concurrent/Future.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Future.html


5

Overview of Java FutureTask
• The Java FutureTask class implements 

Future (indirectly) & provides a cancelable 
async computation

See javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html


6

• FutureTask implements RunnableFuture 
Overview of Java FutureTask

See javase/20/docs/api/java.base/java/util/concurrent/RunnableFuture.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/RunnableFuture.html


7

• FutureTask implements RunnableFuture
• By implementing Runnable, a Future

Task can be submitted to a Thread
or Executor for execution 

Overview of Java FutureTask

See javase/20/docs/api/java.base/java/lang/Runnable.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Runnable.html


8

• FutureTask implements RunnableFuture
• By implementing Runnable, a Future

Task can be submitted to a Thread
or Executor for execution 

Overview of Java FutureTask

See javase/20/docs/api/java.base/java/lang/Runnable.html#run 

The run() hook method 
is called back in the right 

concurrency context

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Runnable.html


9

• FutureTask implements RunnableFuture
• By implementing Runnable, a Future

Task can be submitted to a Thread
or Executor for execution 

• By implementing Future, a Future
Task can process the results of an 
asynchronous computation

Overview of Java FutureTask

See 20/docs/api/java.base/java/util/concurrent/Future.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Future.html


10

• FutureTask implements RunnableFuture
• By implementing Runnable, a Future

Task can be submitted to a Thread
or Executor for execution 

• By implementing Future, a Future
Task can process the results of an 
asynchronous computation

Overview of Java FutureTask

All the Future methods are overridden by 
FutureTask to do their expected behaviors



11

• FutureTask provides several capabilities
Overview of Java FutureTask

See www.geeksforgeeks.org/future-and-futuretask-in-java

http://www.geeksforgeeks.org/future-and-futuretask-in-java


12

• FutureTask provides several capabilities, 
e.g.
• It wraps Callable or Runnable
• i.e., these computations can

now run asynchronously

Overview of Java FutureTask

See javase/20/docs/api/java.base/java/util/concurrent/Callable.html

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Callable.html


13

• FutureTask provides several capabilities, 
e.g.
• It wraps Callable or Runnable
• Start & cancel a computation 

that can run asynchronously

Async FutureTask computations can run via a Java Thread or some Executor

Overview of Java FutureTask



14

• FutureTask provides several capabilities, 
e.g.
• It wraps Callable or Runnable
• Start & cancel a computation 

that can run asynchronously
• Query if the async computation 

completed or was cancelled

Overview of Java FutureTask



15

• FutureTask provides several capabilities, 
e.g.
• It wraps Callable or Runnable
• Start & cancel a computation 

that can run asynchronously
• Query if the async computation 

completed or was cancelled
• Get the result of an async 

computation

Overview of Java FutureTask



16

• FutureTask provides several capabilities, 
e.g.
• It wraps Callable or Runnable
• Start & cancel a computation 

that can run asynchronously
• Query if the async computation 

completed or was cancelled
• Get the result of an async 

computation
• Hook method invoked when task 

transitions to isDone state

Overview of Java FutureTask

Subclasses may override this hook method, e.g., to invoke completion callbacks



17

Applying Java 
FutureTask



18See ModernJava/blob/main/FP/ex16/src/main/java/utils/ActiveObject.java 

• The ActiveObject class uses
FutureTask to define a closure
that applies a Function param
within a virtual Thread object

Applying Java FutureTask
RunnableFuture<R> makeThreadClosure
         (Function<T, R> function,
          T n) {

  var runnableFuture = new 
      FutureTask<R>(() -> {
        return mResult = function
                .apply(n); 
  });

  mThread = Thread
    .startVirtualThread
       (runnableFuture);

  return runnableFuture;
}

https://github.com/douglascraigschmidt/ModernJava/blob/main/FP/ex16/src/main/java/utils/ActiveObject.java


19

• The ActiveObject class uses
FutureTask to define a closure
that applies a Function param
within a virtual Thread object

Applying Java FutureTask
RunnableFuture<R> makeThreadClosure
         (Function<T, R> function,
          T n) {

  var runnableFuture = new 
      FutureTask<R>(() -> {
        return mResult = function
                .apply(n); 
  });

  mThread = Thread
    .startVirtualThread
       (runnableFuture);

  return runnableFuture;
}

This factory method is passed 
a ‘function’ & a parameter to 

apply this ‘function’ to

See javase/20/docs/api/java.base/java/util/function/Function.html 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/function/Function.html


20

• The ActiveObject class uses
FutureTask to define a closure
that applies a Function param
within a virtual Thread object

Applying Java FutureTask
RunnableFuture<R> makeThreadClosure
         (Function<T, R> function,
          T n) {

  var runnableFuture = new 
      FutureTask<R>(() -> {
        return mResult = function
                .apply(n); 
  });

  mThread = Thread
    .startVirtualThread
       (runnableFuture);

  return runnableFuture;
}

Create a FutureTask that defines 
a Callable closure that applies the
function' param to the param 'n'

See javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html#FutureTask 

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/FutureTask.html


21

• The ActiveObject class uses
FutureTask to define a closure
that applies a Function param
within a virtual Thread object

Applying Java FutureTask
RunnableFuture<R> makeThreadClosure
         (Function<T, R> function,
          T n) {

  var runnableFuture = new 
      FutureTask<R>(() -> {
        return mResult = function
                .apply(n); 
  });

  mThread = Thread
    .startVirtualThread
       (runnableFuture);

  return runnableFuture;
}

Create & return a new virtual Thread 
whose Runnable param is the Future
Task that executes asynchronously

See javase/20/docs/api/java.base/java/lang/Thread.html#startVirtualThread

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html


22

• The ActiveObject class uses
FutureTask to define a closure
that applies a Function param
within a virtual Thread object

Applying Java FutureTask
RunnableFuture<R> makeThreadClosure
         (Function<T, R> function,
          T n) {

  var runnableFuture = new 
      FutureTask<R>(() -> {
        return mResult = function
                .apply(n); 
  });

  mThread = Thread
    .startVirtualThread
       (runnableFuture);

  return runnableFuture;
}

Return the RunnableFuture, which 
is stored in the mRunnableField 
by the ActiveObject constructor



23

Applying Java FutureTask
public boolean cancel
  (boolean mayInterruptIfRunning) {
  return mRunnableFuture
   .cancel(mayInterruptIfRunning);
}

public boolean isCancelled() {
  return mRunnableFuture
    .isCancelled();
}

public R get() ... {
  return mRunnableFuture.get();
} ...

• The ActiveObject class overrides
all the Future methods it inherits



24

• The ActiveObject class overrides
all the Future methods it inherits
• & forwards them all to the 

mRunnableFuture field

Applying Java FutureTask
public boolean cancel
  (boolean mayInterruptIfRunning) {
  return mRunnableFuture
   .cancel(mayInterruptIfRunning);
}

public boolean isCancelled() {
  return mRunnableFuture
    .isCancelled();
}

public R get() ... {
  return mRunnableFuture.get();
} ...



25

• The next part of this lesson shows how the Java FutureTask class can be 
combined with the Java Future interface & the Active Object pattern

Applying Java FutureTask

See github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex16 

run()

5.run()

Thread
(main thread)

SimpleEntry
<BigInteger,
Boolean>
Future

4.Return 
    Future

1.ActiveObject(checkIfPrime, prime0)

Function

3.Thread.
  startVirtualThread(ft)

2.Create FutureTask ’ft’ ActiveObject()

ActiveObject

6.get()

https://github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex16


26

End of Overview of 
Java FutureTask


