
Motivating the Need for Java Futures

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the need for the Future pattern & Java Future interface

See en.wikipedia.org/wiki/Futures_and_promises

A future provides a means to retrieve the result
of a computation being executed asynchronously,

without indefinitely blocking the client thread

https://en.wikipedia.org/wiki/Futures_and_promises

3

Motivating the Need
for Java Futures

4See earlier lessons on “Implementing Closures with Java Lambda Expressions”

Motivating the Need for Java Futures
• The CheckPrimality class showed how

a closure could store the results of a
computation running in a Java Thread

5See ModernJava/blob/main/FP/ex6/src/main/java/CheckPrimality.java

• The CheckPrimality class showed how
a closure could store the results of a
computation running in a Java Thread

: ex6

start()

new()

: Check
Primality

main()

run()

getResult()

Motivating the Need for Java Futures

The computation for primality checking runs
asynchronously after the main program’s

client Thread starts the background Thread

https://github.com/douglascraigschmidt/ModernJava/blob/main/FP/ex6/src/main/java/CheckPrimality.java

6See www.geeksforgeeks.org/blocking-methods-in-java

• The CheckPrimality class showed how
a closure could store the results of a
computation running in a Java Thread

: ex6

start()

new()

: Check
Primality

main()

run()

getResult()

Motivating the Need for Java Futures

The client Thread blocks
until the result is available

http://www.geeksforgeeks.org/blocking-methods-in-java

7

• Although CheckPrimality provides some
useful features, there are two limitations : ex6

start()

new()

: Check
Primality

main()

run()

getResult()

Motivating the Need for Java Futures

8See en.wikipedia.org/wiki/Hard_coding

• Although CheckPrimality provides some
useful features, there are two limitations
• Its behavior is “hard-coded”

: ex6

start()

new()

: Check
Primality

main()

run()

getResult()

Motivating the Need for Java Futures

i.e., it only checks the primality
of a BigInteger, even though

its design could be generalized

!"#$
%&$'$
(&)*+

https://en.wikipedia.org/wiki/Hard_coding

9

• Although CheckPrimality provides some
useful features, there are two limitations
• Its behavior is “hard-coded”
• getResult() blocks indefinitely

: ex6

start()

new()

: Check
Primality

main()

run()

getResult()

Motivating the Need for Java Futures

i.e., waiting for the completion
of the primality computation

10

• Although CheckPrimality provides some
useful features, there are two limitations
• Its behavior is “hard-coded”
• getResult() blocks indefinitely

Motivating the Need for Java Futures
: ex6

start()

new()

: Check
Primality

main()

run()

getResult()

The computation
may be slow or it
may run “forever”!

11

Applying Java Futures to
Address These Limitations

12

• We address these limitations in 2 ways
Applying Java Futures to Address These Limitations

13

Applying Java Futures to Address These Limitations
• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects

See en.wikipedia.org/wiki/Active_object

This pattern decouples method execution
from method invocation for objects

residing in their own thread of control

https://en.wikipedia.org/wiki/Active_object

14

• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects

See ModernJava/blob/main/FP/ex16/src/main/java/utils/ActiveObject.java

Applying Java Futures to Address These Limitations

This class implements a variant
of the Active Object pattern
using modern Java features
(e.g., a virtual Thread & the
Function functional interface)

https://github.com/douglascraigschmidt/ModernJava/blob/main/FP/ex16/src/main/java/utils/ActiveObject.java

15

• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects
• Apply the Future pattern & Java Future interface to avoid indefinite blocking

Applying Java Futures to Address These Limitations

16See en.wikipedia.org/wiki/Futures_and_promises

• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects
• Apply the Future pattern & Java Future interface to avoid indefinite blocking
• The Future pattern

Applying Java Futures to Address These Limitations

Provides a ‘virtual’ data object that blocks (or do not block) clients when
they try to get its contents before its concurrent computation completes

https://en.wikipedia.org/wiki/Futures_and_promises

17

• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects
• Apply the Future pattern & Java Future interface to avoid indefinite blocking
• The Future pattern
• The Future interface

Applying Java Futures to Address These Limitations

A proxy that represents the result
of an asynchronous computation

See 20/docs/api/java.base/java/util/concurrent/Future.html

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Future.html

18

• We address these limitations in 2 ways
• Apply the Active Object pattern to create generic concurrent objects
• Apply the Future pattern & Java Future interface to avoid indefinite blocking
• The Future pattern
• The Future interface

Applying Java Futures to Address These Limitations

The ActiveObject class implements the Java Future interface,
so a caller can obtain its results without blocking indefinitely

19See upcoming lesson on “Applying Java Futures in Case Study ex16”

• We demonstrate the Active Object & Future patterns in conjunction with the
Java Future interface in an upcoming case study

Applying Java Futures to Address These Limitations

20

• We demonstrate the Active Object & Future patterns in conjunction with the
Java Future interface in an upcoming case study

• This case study generalizes case study ex6 that checked the primality of
BigInteger objects when computing RSA public & private keys

Applying Java Futures to Address These Limitations

See earlier lessons on “Implementing Closures with Java Lambda Expressions”

21

End of Motivating the
Need for Java Futures

