
Evaluating the ThreadJoinTest
Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how Java functional features

are applied in an ”embarrassingly
parallel” program

• Know how to create, start, process,
& join Java Thread objects via
functional programming features

• Recognize how to use modern Java
functional programming features in
conjunction with Java Thread methods

• Appreciate the pros & cons of using
the Java features in this case study

3

Learning Objectives in this Part of the Lesson
• Understand how Java functional features

are applied in an ”embarrassingly
parallel” program

• Know how to create, start, process,
& join Java Thread objects via
functional programming features

• Recognize how to use modern Java
functional programming features in
conjunction with Java Thread methods

• Appreciate the pros & cons of using
the Java features in this case study
• These “cons” motivate the need for Java’s

concurrency & parallelism frameworks
See www.dre.vanderbilt.edu/~schmidt/cs253

Completable
Futures

http://www.dre.vanderbilt.edu/~schmidt/cs253

4

Pros of the ThreadJoin
Test Program

5

Pros of the ThreadJoinTest Program
• Foundational Java functional programming

features improve the ThreadJoinTest vis-à-
vis an earlier Java object-oriented version

See github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

Starting ThreadJoinTest
in thread 9 re was found at offset 1 in string xreo
in thread 10 fa was found at offset 1 in string xfao
in thread 12 la was found at offset 1 in string xlao
in thread 13 ti was found at offset 1 in string xtiotio
in thread 11 mi was found at offset 1 in string xmiomio
in thread 11 mi was found at offset 4 in string xmiomio
in thread 13 ti was found at offset 4 in string xtiotio
in thread 14 so was found at offset 1 in string xsoosoo
in thread 14 so was found at offset 4 in string xsoosoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 15 do was found at offset 1 in string xdoo
in thread 15 do was found at offset 1 in string xdoo
Ending ThreadJoinTest

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

6

Pros of the ThreadJoinTest Program
• The earlier Java object-oriented

implementation required more
syntax & used traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(e);

}
...

See LiveLessons/blob/master/ThreadJoinTest/original/src/ThreadJoinTest.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ThreadJoinTest/original/src/ThreadJoinTest.java

7

Pros of the ThreadJoinTest Program
• The earlier Java object-oriented

implementation required more
syntax & used traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(e);

}
...

Index-based for loops often
suffer from “off-by-one” errors

See en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error

8

Pros of the ThreadJoinTest Program
• The earlier Java object-oriented

implementation required more
syntax & used traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(e);

}
...

Anonymous
inner classes are
tedious to write..

9

Pros of the ThreadJoinTest Program
• The earlier Java object-oriented

implementation required more
syntax & used traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(e);

}
...

The object-oriented version was thus more tedious & error-prone to program..

10

Pros of the ThreadJoinTest Program
• In contrast, the Java functional

programming implementation is
more concise, extensible, & robust

public void run() {
var workerThreads =
makeThreads
(mInputList,
this::processInput);

workerThreads
.forEach(Thread::start);

...<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
...
inputList.forEach(input ->
workerThreads.add
(new Thread(() -> task.apply(input))));

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest

11

Pros of the ThreadJoinTest Program
• In contrast, the Java functional

programming implementation is
more concise, extensible, & robust
• e.g., Java features like forEach(),

functional interfaces, method
references, & lambda expressions

public void run() {
var workerThreads =
makeThreads
(mInputList,
this::processInput);

workerThreads
.forEach(Thread::start);

...<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
...
inputList.forEach(input ->
workerThreads.add
(new Thread(() -> task.apply(input))));

12

Pros of the ThreadJoinTest Program
• In contrast, the Java functional

programming implementation is
more concise, extensible, & robust
• e.g., Java features like forEach(),

functional interfaces, method
references, & lambda expressions

public void run() {
var workerThreads =
makeThreads
(mInputList,
this::processInput);

workerThreads
.forEach(Thread::start);

...<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task){
...
inputList.forEach(input ->
workerThreads.add
(new Thread(() -> task.apply(input))));

The forEach() method avoids
“off-by-one” fence-post errors

See en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error

13

Pros of the ThreadJoinTest Program
• In contrast, the Java functional

programming implementation is
more concise, extensible, & robust

public void run() {
var workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

...

Functional interfaces, method
references, & lambda expressions
simplify behavior parameterization

See blog.indrek.io/articles/java-8-behavior-parameterization

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task){
...
inputList.forEach(input ->
workerThreads.add
(new Thread(() -> task.apply(input))));

https://blog.indrek.io/articles/java-8-behavior-parameterization/

14

Cons of the ThreadJoin
Test Program

15

Cons of the ThreadJoinTest Program
• There are limitations with foundational Java functional programming features

These features are not all rainbows & unicorns!!

16

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

17

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects

public void run() {
var workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread -> {

try { thread.join(); }
catch(Exception e) {
throw new
RuntimeException(e);

}}); ...

You must remember
to start each Thread!

18

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects

public void run() {
var workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread -> {

try { thread.join(); }
catch(Exception e) {
throw new
RuntimeException(e);

}}); ...
Note the verbosity of handling checked
exceptions in modern Java programs..

See codingjunkie.net/functional-iterface-exceptions

http://codingjunkie.net/functional-iterface-exceptions

19

public void run() {
var workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(rethrowConsumer

(Thread::join));

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects

A helper class can enable less verbose use of checked exceptions in Java functional
programs, though there is some controversy about this type of “exception laundering”

See stackoverflow.com/a/27644392/3312330

https://stackoverflow.com/a/27644392/3312330

20

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects
• One concurrency model supported
• “thread-per-work” hard-codes the

of threads to # of input strings

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, T> task){
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add
(new Thread(()
-> task.apply(input))));

return workerThreads;
}

21

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects
• One concurrency model supported
• Not easily extensible without

major changes to the code

22The ThreadJoinTest implementation is insufficiently declarative!

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects
• One concurrency model supported
• Not easily extensible without

major changes to the code

23

Cons of the ThreadJoinTest Program
• “Accidental complexity” still lurks in

the functional programming version,
e.g.
• Manually creating, starting, &

joining Thread objects
• One concurrency model supported
• Not easily extensible without

major changes to the code

The structure of the concurrent code is much different than the sequential code

var workerThreads = makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(rethrowConsumer

(Thread::join));

vs.

mInputList
.forEach(this::processInput);

Concurrent implementation
vs. sequential implementation

24

Addressing the Cons of the
ThreadJoinTest Program

25

Addressing the Cons of the ThreadJoinTest Program
• Solutions require more than foundational Java functional programming features

See www.youtube.com/watch?v=1OpAgZvYXLQ

https://www.youtube.com/watch?v=1OpAgZvYXLQ

26

Addressing the Cons of the ThreadJoinTest Program
• Solutions require more than foundational Java functional programming features

See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

Stream source

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Input x

Output f(x)

Output g(f(x))

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

27

Addressing the Cons of the ThreadJoinTest Program
• Solutions require more than foundational Java functional programming features

See www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html

Java Streams support functional-style
operations on sequences of elements,
such as map-reduce transformations,

filtering, slicing, searching, matching, etc.

Stream source

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Input x

Output f(x)

Output g(f(x))

http://www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html

28

ImageStreamGang

SocketSocket

Addressing the Cons of the ThreadJoinTest Program
• Solutions require more than foundational Java functional programming features

See www.dre.vanderbilt.edu/~schmidt/cs253

reduce(Stream::concat) …

Parallel Streams…

filter(not(this::urlCached))

map(this::downloadImage)

map(this::applyFilters)

collect(toList())

http://www.dre.vanderbilt.edu/~schmidt/cs253

29

Parallel Stream

.parallelStream()

List of Bard Phrases

…

flatMap(phr -> match(phr, input)

forEach(e -> displayMatch(ti, e))

Sequential Stream

.stream()

List of Bard Phrases

…

flatMap(phr -> match(phr, input)

forEach(e -> displayMatch(ti, e))

• Solutions require more than foundational Java functional programming features• Solutions require more than foundational Java functional programming features

This case study provides
a Java Streams version
of the ThreadJoinTest

Addressing the Cons of the ThreadJoinTest Program

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/BardStreamTest

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/BardStreamTest

30

Parallel Stream

.parallelStream()

List of Bard Phrases

…

flatMap(phr -> match(phr, input)

forEach(e -> displayMatch(ti, e))

Sequential Stream

.stream()

List of Bard Phrases

…

flatMap(phr -> match(phr, input)

forEach(e -> displayMatch(ti, e))

The structure of the sequential code is nearly identical to the concurrent code

• Solutions require more than foundational Java functional programming features
Addressing the Cons of the ThreadJoinTest Program

31

End of Evaluating the
ThreadJoinTest Case Study

