
Applying Java Functional Programming 
Features: the ThreadJoinTest Case Study 

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how Java functional 

features are applied in an ”embar-
rassingly parallel” program

• Know how to create, start, process,
& join Java Thread objects via 
functional programming features

• Recognize how to use modern Java 
functional programming features in 
conjunction with Java Thread methods
• i.e., concurrently search for a List of 

phrases in the works of Shakespeare

<T, R> List<Thread> makeThreads
(List<T> inputList, 
Function<T, R> task) {
List<Thread> workerThreads = 
new ArrayList<>();

inputList.forEach(input ->
workerThreads
.add(new Thread

(() -> task
.apply(input))));

return workerThreads;
}



3

Applying Java Function
Programming Features 

& Threads 



4

Applying the Java Functional Programming Features & Threads

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest


5

End of the Applying Java 
Functional Programming 
Features: the ThreadJoin

Test Case Study


