
Applying Java Functional Programming
Features & Threads in ThreadJoinTest

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how Java functional

features are applied in an ”embar-
rassingly parallel” program

• Know how to create, start, process,
& join Java Thread objects via
functional programming features

“King
Lear”

“MacBeth” “Hamlet” “Julius
Caesar”

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/ThreadJoinTest

3

Overview of the
Concurrency Model

4

• This case study shows functional
programming features the context
of Java Thread objects

Overview of the Concurrency Model

See CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

The run() method creates a List of Java
Thread objects & then starts & waits
for the Thread objects to complete

https://github.com/douglascraigschmidt/ModernJava/blob/main/CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

5

• This case study shows functional
programming features the context
of Java Thread objects

Overview of the Concurrency Model
“King
Lear”

“MacBeth” “Hamlet” “Julius
Caesar”

Each Java Thread objects searches
for Bard phrases concurrently

We use Java platform Thread objects in this case study

6

• This case study shows functional
programming features the context
of Java Thread objects

Overview of the Concurrency Model
“King
Lear”

“MacBeth” “Hamlet” “Julius
Caesar”

A “thread-per-work-of-Shakespeare”
concurrency model is thus applied

This model scales well due limits on the number of works of Shakespeare

7

Overview of the Concurrency Model

The output displays the id for each Thread that found a
match, demonstrating the “embarrassingly parallel” design

[42] "All that glisters is not gold" appears at offset 52032 in "The Merchant of Venice"
[44] "The course of true love never did run smooth" appears at offset 7544 in "A Midsummer Night's Dream"
[55] "Better a witty fool than a foolish wit" appears at offset 16295 in "Twelfth Night; or, What You Will"
[38] "Sit you down, father; rest you" appears at offset 143305 in "The Tragedy of King Lear"
[44] "Lord, what fools these mortals be!" appears at offset 55498 in "A Midsummer Night's Dream"
[55] "If music be the food of love, play on" appears at offset 820 in "Twelfth Night; or, What You Will"
[43] "I cannot tell what the dickens his name is" appears at offset 67121 in "The Merry Wives of Windsor"
[29] "The better part of valour is discretion" appears at offset 149185 in "The First Part of King Henry IV"
[48] "Now is the winter of our discontent" appears at offset 1804 in "King Richard III"
[30] "Uneasy lies the head that wears a crown" appears at offset 76264 in "Second Part of King Henry IV"
[28] "Get thee to a nunnery" appears at offset 86103 in "The Tragedy of Hamlet, Prince of Denmark"
[28] "Get thee to a nunnery" appears at offset 86985 in "The Tragedy of Hamlet, Prince of Denmark"
[48] "A horse! a horse! my kingdom for a horse!" appears at offset 193548 in "King Richard III"
[48] "A horse! a horse! my kingdom for a horse!" appears at offset 193848 in "King Richard III"
[48] "Off with his head!" appears at offset 103021 in "King Richard III"
[49] "What light through yonder window breaks" appears at offset 41234 in "The Tragedy of Romeo and Juliet"

See en.wikipedia.org/wiki/Embarrassingly_parallel

http://en.wikipedia.org/wiki/Embarrassingly_parallel

8

Creating & Starting
Java Thread Objects

9See CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

• The ThreadJoinTest.run() method
starts Thread objects to perform the
concurrent Bard phrase searches

Creating & Starting Thread Objects

https://github.com/douglascraigschmidt/ModernJava/blob/main/CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

10

• Thread objects are created via
the makeThreads() method
called in run()

public void run() {
var workerThreads =
makeThreads
(this::processInput);

...
makeThreads() applies the

Factory Method pattern to create
a List of worker Thread objects

Creating & Starting Thread Objects

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

11

• Thread objects are created via
the makeThreads() method
called in run()
• A method reference to the

processInput() method is
passed as a param

public void run() {
var workerThreads =
makeThreads
(this::processInput);

...

Void processInput(String input)
{ ... }

Creating & Starting Thread Objects

12

• Thread objects are created via
the makeThreads() method
called in run()
• A method reference to the

processInput() method is
passed as a param

public void run() {
var workerThreads =
makeThreads
(this::processInput);

...

Void processInput(String input)
{ ... }

This method searches for Bard phrases
in a single work of William Shakespeare

Creating & Starting Thread Objects

We’ll examine the processInput() method implementation shortly

13

• Thread objects are created via
the makeThreads() method
called in run()
• A method reference to the

processInput() method is
passed as a param

• makeThreads() expects a
Function functional param

public void run() {
var workerThreads =
makeThreads
(this::processInput);

...

List<Thread> makeThreads
(Function<String, Void> task)

{ ... }

Creating & Starting Thread Objects

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

14

• Thread objects are created via
the makeThreads() method
called in run()
• A method reference to the

processInput() method is
passed as a param

• makeThreads() expects a
Function functional param

public void run() {
var workerThreads =
makeThreads
(this::processInput);

...

This functional interface makes it simple to change
the Function passed to makeThreads() if necessary

List<Thread> makeThreads
(Function<String, Void> task)

{ ... }

Creating & Starting Thread Objects

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

15

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

This generic factory method creates a List of Thread
objects that will be joined when their processing is done

Creating & Starting Thread Objects

See CS/ThreadJoinTest/src/main/java/utils/ThreadUtils.java

https://github.com/douglascraigschmidt/ModernJava/blob/main/CS/ThreadJoinTest/src/main/java/utils/ThreadUtils.java

16

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

The ‘inputList’ param contains a List of items
to process (e.g., a work of Shakespeare)

Creating & Starting Thread Objects

17

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

The ‘task’ param is bound to the Function to perform
on each input element (e.g., search for Bard phrases)

Creating & Starting Thread Objects

18

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

Create an empty List of Thread objects

Creating & Starting Thread Objects

19

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

Iterate through ‘inputList’
& create a new Thread

Creating & Starting Thread Objects

20

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

task.apply() creates a runnable
that provides the computation
for each of the Thread objects

Creating & Starting Thread Objects

21

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

Add each new Thread to
the List of Thread objects

Creating & Starting Thread Objects

22

• The makeThreads() factory
method applies the Function to
create a Runnable for a Thread

<T, R> List<Thread> makeThreads
(List<T> inputList,
Function<T, R> task) {
List<Thread> workerThreads =
new ArrayList<>();

inputList.forEach(input ->
workerThreads.add(new Thread
(() -> task.apply(input))));

return workerThreads;
}

Return the List of
Thread objects

Creating & Starting Thread Objects

23

• The run() method uses forEach()
& a method reference to start
all the Thread objects

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

...

Each started Thread then searches for
Bard phrases in its work of Shakespeare

Creating & Starting Thread Objects

See CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

https://github.com/douglascraigschmidt/ModernJava/blob/main/CS/ThreadJoinTest/src/main/java/ThreadJoinTest.java

24

• The run() method uses forEach()
& a method reference to start
all the Thread objects

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

...

Each call to Thread::start creates a new platform
Thread object that has its own runtime stack

Creating & Starting Thread Objects

run()

Runtime
thread
stack

See docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

25

Processing & Joining
Java Thread Objects

26

• The processInput() method was
passed to the makeThreads()
factory method, which bound it
to a Thread object for each work
of Shakepeare

Processing & Joining Java Thread Objects
public void run() {
var workerThreads =
makeThreads
(this::processInput);

...

27

• The processInput() method was
passed to the makeThreads()
factory method, which bound it
to a Thread object for each work
of Shakepeare
• Each Thread object was then

started via forEach()

Processing & Joining Java Thread Objects
public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

...

28

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

29

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

The ‘input’ param contains
a work of Shakespeare

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

30

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Extract the title from the work
(uses Java regular expressions)

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

31

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Iterate through all the
Bard phrases to search for

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

32

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Check to see how many times (if
any) ‘phrase’ appears in ‘input’

(‘offset’ != -1 indicates a match)

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

33

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Display results when
ever a match occurs

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

[42] "All that glisters is not gold"
appears at offset 52032 in "The
Merchant of Venice"

34

• processInput() runs in a Thread &
searches its input param for all the
occurrences of Bard phrases to find

Update ‘offset’ to see if there are any
more matches of ‘phrase’ in the ‘input’

Void processInput(String input) {
var title = getTitle(input);

for (var phrase :
mPhrasesToFind) {

for (int offset = input
.indexOf(phrase);

offset != -1;
offset = input
.indexOf(phrase,

offset
+ phrase
.length())){

display(...);
} ...

Processing & Joining Java Thread Objects

35

• The run() method waits for all
worker Thread objects to finish via
forEach() & a method reference

Uses forEach() & a
method reference

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach

(rethrowConsumer
(Thread::join));

Processing & Joining Java Thread Objects

36See en.wikipedia.org/wiki/Barrier_(computer_science)

• The run() method waits for all
worker Thread objects to finish via
forEach() & a method reference

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach

(rethrowConsumer
(Thread::join));

Simple form of barrier synchronization

Processing & Joining Java Thread Objects

http://en.wikipedia.org/wiki/Barrier_(computer_science)

37

• The run() method waits for all
worker Thread objects to finish via
forEach() & a method reference

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach

(rethrowConsumer
(Thread::join));

No other Java synchronizers are needed!

Processing & Joining Java Thread Objects

38

• The run() method waits for all
worker Thread objects to finish via
forEach() & a method reference

Convert a checked exception
to an unchecked exception

public void run() {
List<Thread> workerThreads =
makeThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach

(rethrowConsumer
(Thread::join));

See stackoverflow.com/a/27644392/3312330

Processing & Joining Java Thread Objects

https://stackoverflow.com/a/27644392/3312330

39

End of Applying Java
Functional Programming

Features & Threads
in ThreadJoinTest

