
Using Java Lambda Expressions
Correctly & Efficiently 

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how lambda expressions 

provide a foundational functional 
programming feature in Modern Java
• & know how to use them correctly

& effectively



3

Using Java Lambda 
Expressions Correctly 

& Effectively 



4

Using Java Lambda Expressions Correctly & Effectively
• Lambda expressions cannot modify variables defined outside their scope

This computation executes in a new Java thread when 
it’s started

int answer = 0;

new Thread(() -> {
answer = 42;
System.out.println("The answer is " + answer);
});

See github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4

https://github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4


5

int answer = 0;

new Thread(() -> {
answer = 42;
System.out.println("The answer is " + answer);
});

Using Java Lambda Expressions Correctly & Effectively
• Lambda expressions cannot modify variables defined outside their scope

If the body of the lambda is a block of statements 
or the lambda has no value & is not a single void 
method invocation, you must use curly brackets

See stackoverflow.com/a/11145970

https://stackoverflow.com/a/11145970


6

int answer = 42;

new Thread(() -> 
System.out.println("The answer is " + answer));

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables

See www.linkedin.com/pulse/java-8-effective-final-gaurhari-dass

Using Java Lambda Expressions Correctly & Effectively

An “effectively final” variable in Java is a variable that is not 
declared as final, but its value never changes after it’s initialized

http://www.linkedin.com/pulse/java-8-effective-final-gaurhari-dass


7

int answer = 42;

new Thread(() -> 
System.out.println("The answer is " + answer));

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables

This lambda expression can access the value of “answer,” which is an 
effectively final variable whose value never changes after it’s initialized

See www.linkedin.com/pulse/java-8-effective-final-gaurhari-dass

Using Java Lambda Expressions Correctly & Effectively

http://www.linkedin.com/pulse/java-8-effective-final-gaurhari-dass


8

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction

int[] answer = new int[1];

new Thread(() -> {
answer[0] = 42;
System.out.println("The answer is " + answer[0]);
});

...
return answer[0];

Create a one-element array

Using Java Lambda Expressions Correctly & Effectively



9

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction

Using Java Lambda Expressions Correctly & Effectively

int[] answer = new int[1];

new Thread(() -> {
answer[0] = 42;
System.out.println("The answer is " + answer[0]);
});

...
return answer[0];

Assign & use item 
‘0’ in that array



10

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction

Using Java Lambda Expressions Correctly & Effectively

int[] answer = new int[1];

new Thread(() -> {
answer[0] = 42;
System.out.println("The answer is " + answer[0]);
});

...
return answer[0];

Do something with the updated 
array element after the lambda



11

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction

Using Java Lambda Expressions Correctly & Effectively

int[] answer = new int[1];

new Thread(() -> {
answer[0] = 42;
System.out.println("The answer is " + answer[0]);
});

...
return answer[0];

However, this solution incurs all the 
drawbacks of shared mutable state..

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html


12

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction
• Here’s another workaround Create an atomic object

Using Java Lambda Expressions Correctly & Effectively

AtomicInteger answer = new AtomicInteger(0);

new Thread(() -> {
answer.set(42);
System.out.println("The answer is " + answer.get());
});

...
return answer.get();

See www.digitalocean.com/community/tutorials/atomicinteger-java

http://www.digitalocean.com/community/tutorials/atomicinteger-java


13

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction
• Here’s another workaround

Using Java Lambda Expressions Correctly & Effectively

AtomicInteger answer = new AtomicInteger(0);

new Thread(() -> {
answer.set(42);
System.out.println("The answer is " + answer.get());
});

...
return answer.get();

Assign & use that 
atomic object



14

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction
• Here’s another workaround

AtomicInteger answer = new AtomicInteger(0);

new Thread(() -> {
answer.set(42);
System.out.println("The answer is " + answer.get());
});

...
return answer.get();

Using Java Lambda Expressions Correctly & Effectively

Do something with the updated 
atomic object after the lambda



15

• Lambda expressions cannot modify variables defined outside their scope
• They can only access final or effectively final variables
• Here’s one workaround for this restriction
• Here’s another workaround

AtomicInteger answer = new AtomicInteger(0);

new Thread(() -> {
answer.set(42);
System.out.println("The answer is " + answer.get());
});

...
return answer.get();

Using Java Lambda Expressions Correctly & Effectively

This solution is thread-safe, but incurs 
some (minor) synchronization overhead

See cephas.net/blog/2006/09/06/atomicinteger

https://cephas.net/blog/2006/09/06/atomicinteger


16

• Lambda expressions are most effective when they are “stateless” & have no 
shared mutable state

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Stateless lambda expressions 
are particularly useful when 

applied to Java parallel streams

Using Java Lambda Expressions Correctly & Effectively

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


17See en.wikipedia.org/wiki/Functional_programming#Pure_functions

Using Java Lambda Expressions Correctly & Effectively
• Lambda expressions are most effective when they are “stateless” & have no 

shared mutable state
String capitalize(String s) {
if (s.length() == 0) return s;
return s.substring(0, 1)

.toUpperCase()
+ s.substring(1)

.toLowerCase();

This ‘pure function’ is stateless
1. Its return value is the same for the same 

arguments (no reading of shared mutable state)
2. Its evaluation has no side effects (no writing to 

shared mutable state)

https://en.wikipedia.org/wiki/Functional_programming


18

End of Using Java 
Lambda Expressions 
Correctly & Efficiently


