
Overview of Java Lambda Expressions
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how lambda expressions provide a

foundational functional programming feature
in Modern Java

We show simple examples that highlight lambda expression syntax & semantics

3

Learning Objectives in this Part of the Lesson
• Understand how lambda expressions provide a

foundational functional programming feature
in Modern Java
• Know how lambda expressions can

be used to represent a wide range
of code block usages in Java

4

Overview of Java
Lambda Expressions

5

• A lambda expression is an unnamed block
of code (with optional parameters)

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

Overview of Java Lambda Expressions

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

6

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

See github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4

Overview of Java Lambda Expressions

https://github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4

7

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

Overview of Java Lambda Expressions

Thread’s constructor expects
an instance of type Runnable

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

8

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

This lambda expression takes
no parameters at all, i.e., “()”

Overview of Java Lambda Expressions

9

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

This lambda expression takes
no parameters at all, i.e., “()”

Overview of Java Lambda Expressions

We’ll show examples later where lambda expressions take parameters

10

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

Overview of Java Lambda Expressions

The arrow is a syntactic construct
that separates the (possibly empty)
parameter list from the lambda body

11

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

Overview of Java Lambda Expressions

This lambda Runnable body
defines the computation

12

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

Overview of Java Lambda Expressions

There’s no need for curly braces when
the lambda body is one expression or

is just a “void” method invocation

See javagoal.com/java-8-lambda-expressions/#2

https://javagoal.com/java-8-lambda-expressions/

13

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

Overview of Java Lambda Expressions

Lambda expressions are very
compact since they focus solely
on computation(s) to perform

14

• A lambda expression is an unnamed block
of code (with optional parameters)

Thread t = new Thread(() ->
System.out.println
("hello world"));

vs

new Thread(new Runnable() {
public void run() {
System.out.println("hello world");

}});

Conversely, this anonymous inner class
requires more code to write each time

Overview of Java Lambda Expressions

15

• Lambda expressions can also work with multiple parameters

String[] nameArray = {"Barbara", "James", "Mary", "John",
"Robert", "Michael", "Linda", "james", "mary"};

Arrays.sort(nameArray, (String s, String t) ->
s.compareToIgnoreCase(t));

Overview of Java Lambda Expressions

See github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex5

https://github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex5

16

• Lambda expressions can work with multiple parameters, e.g.

String[] nameArray = {"Barbara", "James", "Mary", "John",
"Robert", "Michael", "Linda", "james", "mary"};

Arrays.sort(nameArray, (String s, String t) ->
s.compareToIgnoreCase(t));

Array of names represented as strings

Overview of Java Lambda Expressions

17

• Lambda expressions can work with multiple parameters, e.g.

String[] nameArray = {"Barbara", "James", "Mary", "John",
"Robert", "Michael", "Linda", "james", "mary"};

Arrays.sort(nameArray, (String s, String t) ->
s.compareToIgnoreCase(t));

Overview of Java Lambda Expressions

The sort comparison operator is a lambda expression that ignores case

18

• A lambda expression can be stored, passed, & executed later
Overview of Java Lambda Expressions

Runnable r =
() -> System.out.println("hello world");

See github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4

https://github.com/douglascraigschmidt/ModernJava/tree/main/FP/ex4

19

• A lambda expression can be stored, passed, & executed later

You can store a lambda
expression into a variable

Overview of Java Lambda Expressions

Runnable r =
() -> System.out.println("hello world");

20

• A lambda expression can be stored, passed, & executed later

That variable can then be passed as a
param, e.g., the Thread constructor

Overview of Java Lambda Expressions

Runnable r =
() -> System.out.println("hello world");

Thread t = new Thread(r);

21

Runnable r =
() -> System.out.println("hello world");

Thread t = new Thread(r);

t.start();

• A lambda expression can be stored, passed, & executed later

See docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

Overview of Java Lambda Expressions

This computation executes in a
new Java thread when it’s started

run()

Runtime
thread
stack

https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

22

Java Lambda Expressions
Cover a Wide Range of Usages

23

• Lambda expressions can be used to
represent a wide range of code block
usages in Java

Java Lambda Expressions Cover a Wide Range of Usages

24

String f1 =
"62675744/15668936";
String f2 = "609136/913704";

Future<BigFraction> f =
commonPool().submit(() -> {
BigFraction bf1 =
new BigFraction(f1);

BigFraction bf2 =
new BigFraction(f2);

return bf1.multiply(bf2);
});

...

• Lambda expressions can be used to
represent a wide range of code block
usages in Java, e.g.
• Runnable & Callable tasks

Java Lambda Expressions Cover a Wide Range of Usages

Submit a lambda expression
that concurrently multiplies

two BigFraction objects

25

• Lambda expressions can be used to
represent a wide range of code block
usages in Java, e.g.
• Runnable & Callable tasks
• Comparator & filter functions

for collections

Java Lambda Expressions Cover a Wide Range of Usages
List<String> fruits =
new ArrayList<>();

fruits
.add(new String("Apple));

fruits
.add(new String("Orange"));

fruits
.add(new String("Pear"));

fruits
.add(new String("Banana"));

fruits.sort((f1, f2) ->
f1.compareTo(f2))

Sort a List of Java
String objects

26

• Lambda expressions can be used to
represent a wide range of code block
usages in Java, e.g.
• Runnable & Callable tasks
• Comparator & filter functions

for collections
• Event listeners & handlers

Java Lambda Expressions Cover a Wide Range of Usages
public class MainActivity

extends Activity {
protected void onCreate
(Bundle bundle) {
Button button =
findViewById(R.id.button);

Button
.setOnClickListener
(view -> { Toast
.makeText(this,
"Button clicked!",
LENGTH_SHORT).show();

}); }
}

Post a “toast” on Android
when a user clicks a button

27

• Lambda expressions can be used to
represent a wide range of code block
usages in Java, e.g.
• Runnable & Callable tasks
• Comparator & filter functions

for collections
• Event listeners & handlers
• Thread pools & concurrency

constructs

Java Lambda Expressions Cover a Wide Range of Usages
ThreadFactory factory = r -> {
Thread t = new Thread(r);
t.setPriority
(Thread.NORM_PRIORITY);

return t;
};

Create a new Thread with
the designated priority

28

End of Overview of Java
Lambda Expressions

