Java Platiorm Threads vs. Virtual Threads

[Part 2)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning ObJectlves in this Lesson

« Know the differences between Java
platform & virtual threads

« Be aware of how to create Java
platform & virtual threads




Learning Objectives in this Lesson

« Know the differences between Java
platform & virtual threads

« Recognize virtual Thread
best practices




Ways of Creating Java
Platform Threads




Ways of Creating Java Platform Threads

 Java platform threads can be
created in two different ways




Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDThread
created in two different ways extends Thread ({

) public void run()
The traditional way { /* code to run goes\here */ '}

}

Create a new class that
extends the Thread class

Thread gcdThread = new GCDThread() ;
gcdThread.start() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDThread
created in two different ways extends Thread {

N public void run/()
* The traditional way { /* code to run goes here */ }

}

Create & start a Thread using
a new instance of GCDThread

/

Thread gcdThread = new GCDThread() ;
gcdThread.start() ;




Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable
created in two different ways implements Runnable {

] - | public void run ()
The traditional way { /* code to run goes | here */ }

} Create a new class

that implements the
Runnable interface

Runnable gcdRunnable
new GCDRunnable () ;

new Thread (gcdRunnable) .start () ;

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable
created in two different ways implements Runnable {

- public void run()
The traditional way { /* code to run goes here */ }

}

Create a new GCDRunnable, pass
it to a Thread object, & start it

Runnable gcdRunnable =
new GCDRunnable () ;

new Thread (gcdRunnable) .start() ;




Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run()

{ /* code to run goes here */ }

* The traditional way

Runnable gcdRunnable
new GCDRunnable () ;

new Thread (gcdRunnable) .start() ;

Traditional Java Thread objects are relatively “heavyweight” & inflexible




Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run/()

{ /* code to run goes here */ }
* The very modern Java way }

A familiar way to create & start a Java
platform thread so it executes gcadRunnable

Runnable gcdRunnable
new GCDRunnable () ;

new Thread (gcdRunnable) .start() ;

Projelt L.eom

By default, a traditional Java Thread /s a platform thread!




Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run/()

{ /* code to run goes here */ }

* The very modern Java way }
A more flexible way to create & start a
platform thread so it executes gcadRunnable

Runnable gcdRunnable
new GCDRunnable () ;

Thread
.ofPlatform() .start (gcdRunnable) ;

Projelt L.eom

See docs.orade.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html#ofPlatform()



https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run/()

{ /* code to run goes here */ }

* The very modern Java way }

Create an "unstarted” platform thread &
later start it so it executes gcadRunnable

Runnable gcdRunnable
new GCDRunnable () ;

Thread thread = Thread
.0ofPlatform() .unstarted (gcdRunnable) ;

E’D@@j@@@ T.005%%, thread.start() ;

13



Ways of Creating Java Platform Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run()

{ /* code to run goes here */ }
* The very modern Java way }

Runnable gcdRunnable
new GCDRunnable () ;

Thread thread = Thread
.0ofPlatform() .unstarted (gcdRunnable) ;

thread.start() ;

However, Java platform threads are also relatively “heavyweight”




Ways of Creating Java
Virtual Threads

15



Ways of Creating Java Virtual Threads

* Virtual threads can also be public class GCDRunnable

created in very modern Java implements Runnable {
public void run/()

{ /* code to run goes\here */ }

}

Use the same GCDRunnable class as before

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.startVirtualThread
Projelt L.eom (gcdRunnable) ;

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Ways of Creating Java Virtual Threads

 Virtual threads can also be public class GCDRunnable

created in very modern Java implements Runnable {
public void run/()

{ /* code to run goes here */ }

}

A concise way to create & start a Java
virtual thread so it executes gcadRunnable

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.startVirtualThread
Projelt L.eom (gcdRunnable) ;

See docs.orade.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.htmi#startVirtualThread



https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

Ways of Creating Java Virtual Threads

 Virtual threads can also be public class GCDRunnable

created in very modern Java implements Runnable {
public void run/()

{ /* code to run goes here */ }

}

A more flexible way to create & start a
virtual thread so it executes gcadRunnable

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.ofVirtual ()
E’D@@j@@@ 1L, @O .start (gcdRunnable) ;

See docs.orade.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html#ofVirtual()



https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

Ways of Creating Java Virtual Threads

 Virtual threads can also be public class GCDRunnable

created in very modern Java implements Runnable {
public void run/()

{ /* code to run goes here */ }

}

Create an "unstarted” virtual thread &
later start it so it executes gcdRunnable

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
Enggjgxgﬁgﬂg:(}gﬂ .0fVirtual () .unstarted (gcdRunnable) ;

thread.start() ;

19



Ways of Creating Java Virtual Threads

 Virtual threads can also be public class GCDRunnable

created in very modern Java implements Runnable {
public void run/()

{ /* code to run goes here */ }

}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
.0fVirtual () .unstarted (gcdRunnable) ;

thread.start() ;

Java virtual threads are relatively “lightweight”




Virtual Thread
Best Practices

21



Virtual Thread Best Practices

* Follow certain “best practices” e
when using Java virtual threads

See howtodoinjava.com/java/multi-threading/virtual-threads/ # 5-best-practices



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

 Follow certain “best practices”
when using Java virtual threads

* Do not pool virtual threads!

See virtual-threads/#51-do-not-pool-the-virtual-threads



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

* Follow certain “best practices” Runnable runnable =
when using Java virtual threads () -> doWork() ;
e Do not pool virtual threads! _ _
_ _ _ for (int i = 0;
* Creating virtual threads is i < 20 000 000;
inexpensive, so there is never it+)
a need to pool them Thread.startVirtualThread

(runnable) ;

24



Virtual Thread Best Practices

* Follow certain “best practices”
when using Java virtual threads

Thread

 Avoid using thread-local
variables

See virtual-threads/#52-avoid-using-thread-local-variables



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

* Follow certain “best practices”
when using Java virtual threads

One Million

 Avoid using thread-local
variables

 If an app uses ThreadlLocal
& creates 1 million virtual
threads then 1 million Thread
Local instances are created!

26



Virtual Thread Best Practices

° Follow Certaln “best practlces" JEP 429: Scoped Values (Incubator)
when using Java virtual threads “Ouner ancretaley
Type Feature
gtcaotfli J(:DIoKsed / Delivered
Release 20
Component core-libs

g AVOid USi ng th read 'Ioca I Discussion loom dash dev at openjdk dot java dot net

Relates to 8286666: JEP 429: Implementation of Scoped Values (Incubator)
Va rla bIeS Reviewed by Alan Bateman, Alex Buckley
Endorsed by John Rose
Created 2021/03/04 11:03
Updated 2023/04/05 19:26
Issue 8263012

Summary

Introduce scoped values, which enable the sharing of immutable data within and
across threads. They are preferred to thread-local variables, especially when using
large numbers of virtual threads. This is an incubating API.

Goals

= Ease of use — Provide a programming model to share data both within a

® ConSider USi ng “SCO ped Va I ueS" thread and with child threads, so as to simplify reasoning about data flow.

= Comprehensibility — Make the lifetime of shared data visible from the

i n Stead syntactic structure of code.

= Robustness — Ensure that data shared by a caller can be retrieved only by
legitimate callees.

= Performance — Treat shared data as immutable so as to allow sharing by a
large number of threads, and to enable runtime optimizations.

See openjdk.org/jeps/429



https://openjdk.org/jeps/429

Virtual Thread Best Practices

* Follow certain “best practices” public synchronized void m() {
when using Java virtual threads // ... access resource

}

 Avoid using synchronized blocks

» Synchronized blocks “pin” a
virtual thread to a platform
thread..

See virtual-threads/#53-use-reentrantlock-instead-of-synchronized-blocks



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

* Follow certain “best practices” private final ReentrantLock lock
when using Java virtual threads = new ReentrantLock() ;

public void m() {
lock.lock() ;

try {
« Avoid using synchronized blocks // ... access resource
} finally {

lock.unlock () ;

}
}

e Use ReentrantlLocks instead

See www.geeksforgeeks.org/reentrant-lock-java



http://www.geeksforgeeks.org/reentrant-lock-java

Virtual Thread Best Practices

* Follow certain “best practices” <<Java Class>>
when using Java virtual threads (® ReentrantLock

@ ReentrantLock()

@ ReentrantLock(boolean)

@ lock()-void

_ _ _ @ lockinterruptibly():void
 Avoid using synchronized blocks o tryLock()-boolean

@ tryLock(long, TimeUnit):boolean
@ unlock()-void

@ newCondition():Condition

_ @ getHoldCount():int
* Use ReentrantLocks instead @ isHeldByCurrentThread():boolean

* These locks also provide many more |@ isLocked():boolean
features than synchronized blocks! o isFair()-boolean

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

End of Java Platform
Threads vs. Virtual Threads
(Part 2)

31



