Java Platiorm Threads vs. Virtual Threads

(Part1)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Know the differences between Java
platform & virtual threads

Preyjelt oo

Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to kernel threads
scheduled by the operating system. Platform threads will usually have a large stack and other
resources that are maintained by the operating system. Platforms threads are suitable for
executing all types of tasks but may be a limited resource.

Platform threads get an automatically generated thread name by default.

Platform threads are designated daemon or non-daemon threads. When the Java virtual machine
starts up, there is usually one non-daemon thread (the thread that typically calls the application's
main method). The shutdown sequence begins when all started non-daemon threads have
terminated. Unstarted non-daemon threads do not prevent the shutdown sequence from
beginning.

In addition to the daemon status, platform threads have a thread priority and are members of a
thread group.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically user-mode
threads scheduled by the Java runtime rather than the operating system. Virtual threads will
typically require few resources and a single Java virtual machine may support millions of virtual
threads. Virtual threads are suitable for executing tasks that spend most of the time blocked,
often waiting for I/O operations to complete. Virtual threads are not intended for long running
CPU intensive operations.

Virtual threads typically employ a small set of platform threads used as carrier threads. Locking
and I/O operations are examples of operations where a carrier thread may be re-scheduled from
one virtual thread to another. Code executing in a virtual thread is not aware of the underlying
carrier thread. The currentThread() method, used to obtain a reference to the current thread,
will always return the Thread object for the virtual thread.

Virtual threads do not have a thread name by default. The getName method returns the empty
string if a thread name is not set.

Virtual threads are daemon threads and so do not prevent the shutdown sequence from
beginning. Virtual threads have a fixed thread priority that cannot be changed.

See docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

Learning Objectives in this Lesson

- Know the differences between Java - ~
. Process
platform & virtual threads
« Platform threads are typically =5
mapped 1-to-1 onto kernel-mode
threads scheduled by the OS e’é ,,
%

Platform Threads
s

See medium.com/@a gegov/java-19-virtual-threads-vs-platform-threads-ff0452cal1204

mailto:medium.com/@a_gegov/java-19-virtual-threads-vs-platform-threads-ff0452ca1204

Learning Objectives in this Lesson

« Know the differences between Java -

platform & virtual threads Process

Virtual Threads _}é

« Virtual threads are typically
user-mode threads scheduled by
the Java execution environment

s
A pool of platform thread

See howtodoinjava.com/java/multi-threading/virtual-threads

https://howtodoinjava.com/java/multi-threading/virtual-threads

Overview of Java
Platform Threads

Overview of Java Platform Threads

* AJava Thread has traditionally been an object ——

containing various methods & fields that

constitute its “state” Program Counter
Stack Native Stack
/
/
/

e.g., each Java Thread has its own unigue name,
/dentifier, priority, runtime stack, thread-local
storage, instruction pointer, & other registers, etc.

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

Overview of Java Platform Threads

* A Java Thread has traditionally been an object
containing various methods & fields that
constitute its “state”

* Very modern Java refers to these types
of Java threads as “platform threads”

10y ECERF oo

See wiki.openijdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

Overview of Java Platform Threads

» Each Java platform thread is associated

1-to-1 with an OS kernel thread

See en.wikipedia.org/wiki/Thread (computing)#Kernel threads

https://en.wikipedia.org/wiki/Thread_(computing)

Overview of Java Platform Threads

» Each Java platform thread is associated

1-to-1 with an OS kernel thread

It contains the same unique “state” as
a traditional Java Thread object

e

e.g., its own unigue name, identifier;
priority, runtime stack, thread-local storage,

Instruction pointer, & other registers, etc.

Overview of Java Platform Threads

» Each Java platform thread is associated
1-to-1 with an OS kernel thread

» Platforms threads are suitable for
executing all types of tasks

10

Overview of Java Platform Threads

» Each Java platform thread is associated it of URLe to Download
1-to-1 with an OS kernel thread HEOEEE. . O

List of Filters to Apply

] [- I '
» Platforms threads are suitable for 18K

executing all types of tasks
 Particularly I/O-bound tasks

that block reading/writing porsistent
on sockets or files

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/ImageStreamGang

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/ImageStreamGang

Overview of Java PIatform Threads

» Each Java platform thread is associated
1-to-1 with an OS kernel thread

* However, they are a limited resource due §
to their non-trivial runtime stack size -

ol TTUITED

See docs.oracle.com/cd/E13150 01/jrockit jvm/jrockit/geninfo/diagnos/thread basics.html

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html

Overview of Java Platform Threads

» Each Java platform thread is associated ATOUICKECALL *
1-to-1 with an OS kernel thread QUICRAS

BV
g’*’\ = }7 ne
\' ﬂ mﬂ‘f ;h

* However, they are a limited resource due

to their non-trivial runtime stack size IT WILL "ONLY=TAKEA "SECOND"
S —
* They may also need to synchronize,
which causes an expensive context
switch to happen between OS Threads

See en.wikipedia.org/wiki/Context switch

https://en.wikipedia.org/wiki/Context_switch

Overview of Java
Virtual Threads

14

Overview of Java Virtual Threads

» Each Java virtual thread is a “lightweight” concurrency object

Virtual
Thread

Platform
Thread

See www.infog.com/articles/java-virtual-threads

http://www.infoq.com/articles/java-virtual-threads

Overview of Java Virtual Threads

» Each Java virtual thread is a “lightweight” concurrency object

e [t is a user thread rather than a kernel thread
Virtual
Threads

£

/"

User threads

‘See en.wikipedia.org/wiki/Thread (computing)#User threads|

https://en.wikipedia.org/wiki/Thread_(computing)

Overview of Java Virtual Threads

» Each Java virtual thread is a “lightweight” concurrency object

e Tt is a user thread rather than a kernel thread
Virtual

It is scheduled by the Java Threads
execution environment rather 5 5
than the underlying OS

%

L AN

{ See openjdk.org/jeps/444

https://openjdk.org/jeps/444

Overview of Java Virtual Threads

» Each Java virtual thread is a “lightweight” concurrency object
It is a user thread rather than a kernel thread

K < s E <
* Avery large # of virtual threads ¢ S T < >
can therefore be created - <

ONEBILLION

See www.youtube.com/watch?v=UI5S0FFmOzU4

https://www.youtube.com/watch?v=Ul50FFmOzU4

Overview of Java Virtual Threads

« Virtual threads are multiplexed atop a pool of “carrier” threads

Carrier thread:

R R R R Runnable R R R
| vr2 VT 1 VT 3 VT2 VT 1 VT2 VT 3 VT 1
Virtual thread 1:
R Waiting Runnable Waiting Blocked R
Virtual thread 2:
R Blocked Waiting R Waiting R
Virtual thread 3:
R Waiting R

Blocking operations no longer block the executing thread, which enables the
processing of a large # of requests in parallel with a small # of carrier threads

See www.happycoders.eu/java/virtual-threads

http://www.happycoders.eu/java/virtual-threads

Overview of Java Virtual Threads

« Virtual threads are multiplexed atop a pool of “carrier” threads
* The Java fork-join framework is

P Virtual > =S
currently used to implement g % 7 Theads %
these "carrier” threads % < 2 s = _ K 5

t F e F e
5 s %

v 2
*»-A.\p°°’ of fork-join worker thre

See theboreddev.com/understanding-java-virtual-threads

https://theboreddev.com/understanding-java-virtual-threads

Overview of Java Virtual Threads

« Virtual threads are multiplexed atop a pool of “carrier” threads

WorkQueue WorkQueue WorkQueue

Sub-Task; 4

Sub-Task; ,
* More info on the Java fork-join e E—
framework is available online — —

See www.dre.vanderbilt.edu/~schmidt/cs254

http://www.dre.vanderbilt.edu/~schmidt/cs254

Overview of Java Virtual Threads

« Virtual threads are multiplexed atop a pool of “carrier” threads

WorkQueue WorkQueue WorkQueue

B
a

SUb-TaSk12

* More info on the Java fork-join
framework is available online

* “Work-stealing”

» Enables idle worker threads to
“steal” work from busy threads

Sub-Task; 3 Sub-Task; 3

Sub-Task; 4 Sub-Task; 4

See en.wikipedia.org/wiki/Work stealing

https://en.wikipedia.org/wiki/Work_stealing

Overview of Java Virtual Threads

« Virtual threads are multiplexed atop a pool of “carrier” threads

* More info on the Java fork-join T :

Feedback
framework is available online

* Managed blocking

» Helps avoid starvation &
improve performance by
adding new worker threads
when existing ones block

=
4 pooj of worker threa®

See www.javaspecialists.eu/archive/Issue223-ManagedBlocker.html

http://www.javaspecialists.eu/archive/Issue223-ManagedBlocker.html

End of Java Platform
Threads vs. Virtual Threads
(Part 1)

24

