
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

Java Platform Threads vs. Virtual Threads 
(Part 1)

mailto:d.schmidt@vanderbilt.edu


2

• Know the differences between Java
platform & virtual threads

Learning Objectives in this Lesson

See docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html


3

• Know the differences between Java
platform & virtual threads
• Platform threads are typically

mapped 1-to-1 onto kernel-mode
threads scheduled by the OS

Learning Objectives in this Lesson

See medium.com/@a_gegov/java-19-virtual-threads-vs-platform-threads-ff0452ca1204

Process 

Platform Threads 

mailto:medium.com/@a_gegov/java-19-virtual-threads-vs-platform-threads-ff0452ca1204


4

• Know the differences between Java
platform & virtual threads
• Platform threads are typically

mapped 1-to-1 onto kernel-mode
threads scheduled by the OS

• Virtual threads are typically
user-mode threads scheduled by
the Java execution environment

Learning Objectives in this Lesson
Process 

See howtodoinjava.com/java/multi-threading/virtual-threads

https://howtodoinjava.com/java/multi-threading/virtual-threads


5

Overview of Java 
Platform Threads



6

Overview of Java Platform Threads
• A Java Thread has traditionally been an object

containing various methods & fields that 
constitute its “state”

See blog.jamesdbloom.com/JVMInternals.html

e.g., each Java Thread has its own unique name, 
identifier, priority, runtime stack, thread-local 

storage, instruction pointer, & other registers, etc.

http://blog.jamesdbloom.com/JVMInternals.html


7

Overview of Java Platform Threads
• A Java Thread has traditionally been an object

containing various methods & fields that 
constitute its “state”
• Very modern Java refers to these types

of Java threads as “platform threads” 

See wiki.openjdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main


8

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 

See en.wikipedia.org/wiki/Thread_(computing)#Kernel_threads

https://en.wikipedia.org/wiki/Thread_(computing)


9

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 
• It contains the same unique “state” as 

a traditional Java Thread object

e.g., its own unique name, identifier, 
priority, runtime stack, thread-local storage, 
instruction pointer, & other registers, etc.



10

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 
• It contains the same unique “state” as 

a traditional Java Thread object
• Platforms threads are suitable for 

executing all types of tasks



11

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 
• It contains the same unique “state” as 

a traditional Java Thread object
• Platforms threads are suitable for 

executing all types of tasks
• Particularly I/O-bound tasks 

that block reading/writing
on sockets or files

SocketSocket

Persistent 
Data Store

See github.com/douglascraigschmidt/ModernJava/tree/main/CS/ImageStreamGang

https://github.com/douglascraigschmidt/ModernJava/tree/main/CS/ImageStreamGang


12

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 
• It contains the same unique “state” as 

a traditional Java Thread object
• Platforms threads are suitable for 

executing all types of tasks
• However, they are a limited resource due

to their non-trivial runtime stack size

See docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html


13

Overview of Java Platform Threads
• Each Java platform thread is associated 

1-to-1 with an OS kernel thread 
• It contains the same unique “state” as 

a traditional Java Thread object
• Platforms threads are suitable for 

executing all types of tasks
• However, they are a limited resource due

to their non-trivial runtime stack size
• They may also need to synchronize,

which causes an expensive context 
switch to happen between OS Threads

See en.wikipedia.org/wiki/Context_switch

https://en.wikipedia.org/wiki/Context_switch


14

Overview of Java 
Virtual Threads



15

Overview of Java Virtual Threads
• Each Java virtual thread is a “lightweight” concurrency object 

Virtual
Thread

See www.infoq.com/articles/java-virtual-threads

Platform
Thread

http://www.infoq.com/articles/java-virtual-threads


16

Overview of Java Virtual Threads
• Each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread

See en.wikipedia.org/wiki/Thread_(computing)#User_threads

User threads

Virtual
Threads

https://en.wikipedia.org/wiki/Thread_(computing)


17

Overview of Java Virtual Threads
• Each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• It is scheduled by the Java 

execution environment rather 
than the underlying OS

Virtual
Threads

See openjdk.org/jeps/444

https://openjdk.org/jeps/444


18

Overview of Java Virtual Threads

See www.youtube.com/watch?v=Ul50FFmOzU4

• Each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• It is scheduled by the Java 

execution environment rather 
than the underlying OS

• A very large # of virtual threads
can therefore be created

Virtual
Threads

https://www.youtube.com/watch?v=Ul50FFmOzU4


19

Overview of Java Virtual Threads
• Virtual threads are multiplexed atop a pool of “carrier” threads

See www.happycoders.eu/java/virtual-threads

Blocking operations no longer block the executing thread, which enables the 
processing of a large # of requests in parallel with a small # of carrier threads

http://www.happycoders.eu/java/virtual-threads


20

Overview of Java Virtual Threads
• Virtual threads are multiplexed atop a pool of “carrier” threads
• The Java fork-join framework is

currently used to implement
these “carrier” threads

See theboreddev.com/understanding-java-virtual-threads

Virtual
Threads

https://theboreddev.com/understanding-java-virtual-threads


21

Overview of Java Virtual Threads
• Virtual threads are multiplexed atop a pool of “carrier” threads
• The Java fork-join framework is

currently used to implement
these “carrier” threads

• More info on the Java fork-join
framework is available online

See www.dre.vanderbilt.edu/~schmidt/cs254

http://www.dre.vanderbilt.edu/~schmidt/cs254


22

Overview of Java Virtual Threads
• Virtual threads are multiplexed atop a pool of “carrier” threads
• The Java fork-join framework is

currently used to implement
these “carrier” threads

• More info on the Java fork-join
framework is available online
• “Work-stealing”
• Enables idle worker threads to

“steal” work from busy threads

See en.wikipedia.org/wiki/Work_stealing

https://en.wikipedia.org/wiki/Work_stealing


23

Overview of Java Virtual Threads
• Virtual threads are multiplexed atop a pool of “carrier” threads
• The Java fork-join framework is

currently used to implement
these “carrier” threads

• More info on the Java fork-join
framework is available online
• “Work-stealing”
• Managed blocking
• Helps avoid starvation &

improve performance by
adding new worker threads
when existing ones block

See www.javaspecialists.eu/archive/Issue223-ManagedBlocker.html

http://www.javaspecialists.eu/archive/Issue223-ManagedBlocker.html


24

End of Java Platform 
Threads vs. Virtual Threads 

(Part 1)


