
Overview of the OneShot
ExecutorCompletionService Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the SearchTask

Gang case study
• Recognize the methods that

are defined by the TaskGang
framework

• Know the subclasses that extends
TaskGang (directly or indirectly)
• SearchTaskGangCommon
• OneShotThreadPerTask
• OneShotExecutorService
• OneShotExecutorServiceFuture
• OneShotExecutorCompletionService

See SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

3

Overview of
OneShotExecutor
CompletionService

4

Overview of OneShotExecutorCompletionService

Customizes SearchTaskGang Common to do one-shot search
for words in a List of Strings with maximal concurrency

5See SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

Overview of OneShotExecutorCompletionService

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

6

Overview of OneShotExecutorCompletionService

Overcomes limitations with the synchronous Future
processing model via ExecutorCompletionService

1.execute(task)

ThreadPoolExecutor

Variable
WorkerThreads

Thread
(main thread)

execute() run()

3.take()
4.run()

runnable

runnable

Input Strings to Search

"do", "re", "mi", "fa",
"so", "la", "ti", "do"

Search Words

SearchResults

SearchResults

SearchResults

SearchResults

Completion
Queue

Executor
Completion
Service

runnable

WorkQueue

2.offer()

Strategy Implementation
Executor
model

“Work-stealing”
Thread pool

Unit of
concurrency

Task per search word
& input String

Results
processing
model

Asynchronous Future
model processes
results immediately

• Customizes SearchTaskGang
Common to search for words
in a List of String objects with
maximal concurrency

7

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency

8

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a “work-stealing”

Thread pool
• Created by an Executors

factory method

setExecutor
 (Executors.newWorkStealingPool());

mCompletionService = new
 ExecutorCompletionService<>
 (getExecutor());

9

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Concurrently process search

results as Futures are done

setExecutor
 (Executors.newWorkStealingPool());

mCompletionService = new
 ExecutorCompletionService<>
 (getExecutor());

10

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently for (int i = 0; i < inputSize; ++i)
 getExecutorService().
 execute(makeTask(i));

concurrentlyProcessQueuedFutures();

11

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently
• Results processing starts

once any Future is done

for (int i = 0; i < inputSize; ++i)
 getExecutorService().
 execute(makeTask(i));

concurrentlyProcessQueuedFutures();

12

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently
• Uses ExecutorService to

search each word in input
concurrently

for (var word : mWordsToFind) {
 mCompletionService().submit
 (() -> searchForWord(word,
 inputData));
}

The Future objects returned by submit() are ignored here

13

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently
• Uses ExecutorService to

search each word in input
concurrently

• Future results are processed
concurrently wrt submit() calls

for (int i = 0; i < count; ++i) {
 var resultFuture =
 rethrowSupplier
 (mCompletionService::take)
 .get();

 resultFuture.resultNow().print();
}

14

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently
• Uses ExecutorService to

search each word in input
concurrently

• Future results are processed
concurrently wrt submit() calls
• take() may block

for (int i = 0; i < count; ++i) {
 var resultFuture =
 rethrowSupplier
 (mCompletionService::take)
 .get();

 resultFuture.resultNow().print();
}

15

Overview of OneShotExecutorCompletionService
• Customizes SearchTaskGang

Common to search for words
in a List of String objects with
maximal concurrency
• Uses a cached Thread pool
• Connect the Executor with

ExecutorCompletionService
• Each input data element is

processed concurrently
• Uses ExecutorService to

search each word in input
concurrently

• Future results are processed
concurrently wrt submit() calls
• take() may block
• resultNow() doesn’t block since Futures aren’t queued until they’re done

for (int i = 0; i < count; ++i) {
 var resultFuture =
 rethrowSupplier
 (mCompletionService::take)
 .get();

 resultFuture.resultNow().print();
}

16

Walkthrough of OneShotExecutorCompletionService

See SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorCompletionService.java

17

End of Overview of OneShot
ExecutorCompletionService

