
Overview of the OneShot
ExecutorServiceFuture Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the SearchTaskGang

case study
• Recognize the methods that are

defined by the TaskGang
framework

• Know the subclasses that
extends TaskGang (directly
or indirectly)
• SearchTaskGangCommon
• OneShotThreadPerTask
• OneShotExecutorService
• OneShotExecutorServiceFuture

See SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

3

Overview of Oneshot
ExecutorServiceFuture

4

Overview of OneShotExecutorServiceFuture

Customizes SearchTaskGang Common to do a one-shot search
for words in a List of Strings with a thread pool & futures

5See SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

Overview of OneShotExecutorServiceFuture

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

6

Overview of OneShotExecutorServiceFuture

1.execute(task)

ThreadPoolExecutor

Variable
WorkerThreads

Thread
(main thread)

runnable

WorkQueue

execute() run()

3.take()
4.run()

2.offer()

runnable

runnable

Input Strings to Search

"do", "re", "mi", "fa",
"so", "la", "ti", "do"

Search Words

SearchResults

SearchResults

SearchResults

SearchResults

Result
Futures

Strategy Implementation
Executor
model

Variable-size Thread
pool

Unit of
concurrency

Task per search word

Results
processing
model

Synchronous Future
model that defers
results processing

• Customizes SearchTaskGang
Common to search for words
in a List of String objects

7

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects

8

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Created by an Executors

factory method

setExecutor
 (Executors.newCachedThreadPool());

9

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently

mResultFutures = new ArrayList<Future<SearchResults>>
 (inputSize * mWordsToFind.length);

for (var inputData : getInput())
 processInput(inputData);

processFutureResults(mResultFutures);

10

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently
• Instead, the ExecutorService

searches each word in the
input concurrently

for (var word : mWordsToFind) {
 var resultFuture = getExecutor().submit
 (() -> searchForWord(word, inputData));

 mResultFutures.add(resultFuture);
}

11

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently
• Instead, the ExecutorService

searches each word in the
input concurrently
• Results stored in Futures List

for (var word : mWordsToFind) {
 var resultFuture = getExecutor().submit
 (() -> searchForWord(word, inputData));

 mResultFutures.add(resultFuture);
}

12

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently
• Instead, the ExecutorService

searches each word in the
input concurrently

• Results processing doesn’t start
until all Futures added

mResultFutures = new ArrayList<Future<SearchResults>>
 (inputSize * mWordsToFind.length);

for (var inputData : getInput()) processInput(inputData);

processFutureResults(mResultFutures);

13

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently
• Instead, the ExecutorService

searches each word in the
input concurrently

• Results processing doesn’t start
until all Futures added

• Future results are processed
concurrently wrt submit() calls

for (var resultFuture
 : resultFutures) {
 ...
 rethrowSupplier
 (resultFuture::get)
 .get().print();
 ...

14

Overview of OneShotExecutorServiceFuture
• Customizes SearchTaskGang

Common to search for words
in a List of String objects
• Uses a cached Thread pool
• Each input data element is

not processed concurrently
• Instead, the ExecutorService

searches each word in the
input concurrently

• Results processing doesn’t start
until all Futures added

• Future results are processed
concurrently wrt submit() calls
• However, get() will block if

results aren’t done

This “synchronous” Future processing model has limitations..

for (var resultFuture
 : resultFutures) {
 ...
 rethrowSupplier
 (resultFuture::get)
 .get().print();
 ...

15

Walkthrough of OneShotExecutorServiceFuture

See SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/tasks/OneShotExecutorServiceFuture.java

16

End of Overview of One
ShotExecutorServiceFuture

