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Learning Objectives in this Part of the Lesson
• Understand the SearchTaskGang case study 
• Recognize the methods that are defined by

the TaskGang framework

See SearchTaskGang/src/main/java/utils/TaskGang.java 

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java
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Overview of the 
TaskGang Framework
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• Defines a framework for spawning & 
running a "gang" of tasks

Overview of the TaskGang Framework

A “task” is a command that can execute in a background Thread 
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1.execute(task)

• Defines a framework for spawning & 
running a "gang" of tasks
• Concurrently process input from a 

generic List of elements for one or 
more cycles via Executor framework

Overview of the TaskGang Framework
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See SearchTaskGang/src/main/java/utils/TaskGang.java 

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java
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• Defines a framework for spawning & 
running a "gang" of tasks
• Concurrently process input from a 

generic List of elements for one or 
more cycles via Executor framework

• Useful for “embarrassingly 
parallel” computations

See en.wikipedia.org/wiki/Embarrassingly_parallel 

Overview of the TaskGang Framework

http://en.wikipedia.org/wiki/Embarrassingly_parallel
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• Defines a framework for spawning & 
running a "gang" of tasks
• Concurrently process input from a 

generic List of elements for one or 
more cycles via Executor framework

• Useful for “embarrassingly 
parallel” computations
• e.g., little or no effort required 

to separate the problem into 
a number of parallel tasks

Overview of the TaskGang Framework
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• Defines a framework for spawning & 
running a "gang" of tasks
• Concurrently process input from a 

generic List of elements for one or 
more cycles via Executor framework

• Useful for “embarrassingly 
parallel” computations

• Representative case study for 
“commonality” & “variability” 
in framework design

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf 

Overview of the TaskGang Framework

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf
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• The framework itself supports 
“commonality”

Overview of the TaskGang Framework



10

• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures reused by TaskGang 
framework & applications that 
customize the framework

Overview of the TaskGang Framework

e.g., BarrierTaskGang & ImageTaskGang
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• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures
• Common algorithms & control flow

Overview of the TaskGang Framework
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• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures
• Common algorithms & control flow
• run() is a template method that 

defines the entry into a task gang

Overview of the TaskGang Framework

See en.wikipedia.org/wiki/Template_method_pattern 

setInput(getNextInput());
initiateTaskGang
    (getInput().size());
awaitTasksDone();

https://en.wikipedia.org/wiki/Template_method_pattern
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• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures
• Common algorithms & control flow
• makeTask() factory method creates 

Runnable (often run concurrently)

Overview of the TaskGang Framework

See en.wikipedia.org/wiki/Factory_method_pattern 

return () -> { ...
      E e = 
        getInput().get(index);
      if (processInput(e)))
        taskDone(index);
      ... };

https://en.wikipedia.org/wiki/Factory_method_pattern
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• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures
• Common algorithms & control flow
• advanceTaskToNextCycle() controls 

whether “one-shot” or “cyclic” 
processing occurs

Overview of the TaskGang Framework

Defaults to just running once (i.e., a “one-shot”)

return false;
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• The framework itself supports 
“commonality”, e.g.
• Common data members & method 

signatures
• Common algorithms & control flow
• AtomicLong is used to increment & 

read the current cycle

Overview of the TaskGang Framework

Keeps track of the cycle count
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• Framework must be customized to 
support “variability”

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• e.g., from files, strings, network 

connection, etc.

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• e.g., one-shot or cyclic

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• e.g., fixed vs. cached

Overview of the TaskGang Framework
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• Which type of concurrency 

model
• e.g., Thread pool vs. Thread

 -per-input element

Overview of the TaskGang Framework



24

• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• Which type of concurrency 

model
• What type of synchronizer
• e.g., CyclicBarrier, Phaser,

or CountDownLatch

Overview of the TaskGang Framework

CyclicBarrier must be used with Thread-per-Input model
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization 
• What processing to perform on 

each input element
• e.g., synchronous vs.

asynchronously

Overview of the TaskGang Framework

Can support highly concurrent processing via thread pools or virtual threads!
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• Framework must be customized to 
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization 
• What processing to perform on 

each input element
• How to wait for all the tasks 

in the gang to complete
• e.g., join(), CountDownLatch, 

etc.

Overview of the TaskGang Framework



27

Walkthrough of the TaskGang Class

See SearchTaskGang/src/main/java/utils/TaskGang.java 

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java
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End of Overview of the 
TaskGang Framework


