
Overview of the TaskGang Framework

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the SearchTaskGang case study
• Recognize the methods that are defined by

the TaskGang framework

See SearchTaskGang/src/main/java/utils/TaskGang.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java

3

Overview of the
TaskGang Framework

4

• Defines a framework for spawning &
running a "gang" of tasks

Overview of the TaskGang Framework

A “task” is a command that can execute in a background Thread

5

1.execute(task)

• Defines a framework for spawning &
running a "gang" of tasks
• Concurrently process input from a

generic List of elements for one or
more cycles via Executor framework

Overview of the TaskGang Framework

ThreadPoolExecutor

WorkerThreads

Thread
(main thread)

runnable

runnable

runnable

runnable

WorkQueue

execute() run()

3.take()
4.run()

2.offer()

runnable

runnable

Input Sources

…

In
pu

t C
yc

le
s

See SearchTaskGang/src/main/java/utils/TaskGang.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java

6

• Defines a framework for spawning &
running a "gang" of tasks
• Concurrently process input from a

generic List of elements for one or
more cycles via Executor framework

• Useful for “embarrassingly
parallel” computations

See en.wikipedia.org/wiki/Embarrassingly_parallel

Overview of the TaskGang Framework

http://en.wikipedia.org/wiki/Embarrassingly_parallel

7

• Defines a framework for spawning &
running a "gang" of tasks
• Concurrently process input from a

generic List of elements for one or
more cycles via Executor framework

• Useful for “embarrassingly
parallel” computations
• e.g., little or no effort required

to separate the problem into
a number of parallel tasks

Overview of the TaskGang Framework

8

• Defines a framework for spawning &
running a "gang" of tasks
• Concurrently process input from a

generic List of elements for one or
more cycles via Executor framework

• Useful for “embarrassingly
parallel” computations

• Representative case study for
“commonality” & “variability”
in framework design

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

Overview of the TaskGang Framework

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

9

• The framework itself supports
“commonality”

Overview of the TaskGang Framework

10

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures reused by TaskGang
framework & applications that
customize the framework

Overview of the TaskGang Framework

e.g., BarrierTaskGang & ImageTaskGang

11

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures
• Common algorithms & control flow

Overview of the TaskGang Framework

12

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures
• Common algorithms & control flow
• run() is a template method that

defines the entry into a task gang

Overview of the TaskGang Framework

See en.wikipedia.org/wiki/Template_method_pattern

setInput(getNextInput());
initiateTaskGang
 (getInput().size());
awaitTasksDone();

https://en.wikipedia.org/wiki/Template_method_pattern

13

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures
• Common algorithms & control flow
• makeTask() factory method creates

Runnable (often run concurrently)

Overview of the TaskGang Framework

See en.wikipedia.org/wiki/Factory_method_pattern

return () -> { ...
 E e =
 getInput().get(index);
 if (processInput(e)))
 taskDone(index);
 ... };

https://en.wikipedia.org/wiki/Factory_method_pattern

14

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures
• Common algorithms & control flow
• advanceTaskToNextCycle() controls

whether “one-shot” or “cyclic”
processing occurs

Overview of the TaskGang Framework

Defaults to just running once (i.e., a “one-shot”)

return false;

15

• The framework itself supports
“commonality”, e.g.
• Common data members & method

signatures
• Common algorithms & control flow
• AtomicLong is used to increment &

read the current cycle

Overview of the TaskGang Framework

Keeps track of the cycle count

16

• Framework must be customized to
support “variability”

Overview of the TaskGang Framework

17

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from

Overview of the TaskGang Framework

18

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• e.g., from files, strings, network

connection, etc.

Overview of the TaskGang Framework

19

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run

Overview of the TaskGang Framework

20

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• e.g., one-shot or cyclic

Overview of the TaskGang Framework

21

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization

Overview of the TaskGang Framework

22

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• e.g., fixed vs. cached

Overview of the TaskGang Framework

23

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• Which type of concurrency

model
• e.g., Thread pool vs. Thread

 -per-input element

Overview of the TaskGang Framework

24

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization, e.g.
• Which type of Executor
• Which type of concurrency

model
• What type of synchronizer
• e.g., CyclicBarrier, Phaser,

or CountDownLatch

Overview of the TaskGang Framework

CyclicBarrier must be used with Thread-per-Input model

25

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization
• What processing to perform on

each input element
• e.g., synchronous vs.

asynchronously

Overview of the TaskGang Framework

Can support highly concurrent processing via thread pools or virtual threads!

26

• Framework must be customized to
support “variability”, e.g.
• Where the data comes from
• How many cycles to run
• How to structure threading &

synchronization
• What processing to perform on

each input element
• How to wait for all the tasks

in the gang to complete
• e.g., join(), CountDownLatch,

etc.

Overview of the TaskGang Framework

27

Walkthrough of the TaskGang Class

See SearchTaskGang/src/main/java/utils/TaskGang.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchTaskGang/src/main/java/utils/TaskGang.java

28

End of Overview of the
TaskGang Framework

