
Evaluating the Java Monitor

Object Motivating Example

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand what monitors are & know how Java built-in monitor objects can

ensure mutual exclusion & coordination between threads

• Note a human-known use of monitors

• Recognize common synchronization problems in concurrent Java programs
using the BuggyQueue case study app

• Be aware of common complexities in concurrent programs like BuggyQueue

3

Evaluating the Buggy
Producer/Consumer

4

• Key question: what’s the output & why?

Evaluating the Buggy Producer/Consumer

consumer :

Thread

: Buggy

QueueTest

producer :

Thread

main()

buggyQueue :

BuggyQueue

start() run()

new()

new()

run()
start()

new()

poll()

offer(“…")

5

consumer :

Thread

: Buggy

QueueTest

producer :

Thread

main()

buggyQueue :

BuggyQueue

start() run()

new()

new()

run()
start()

new()

poll()

offer(“…")

Exception in thread "Thread-1" java.lang.NullPointerException
at java.util.LinkedList.unlink(LinkedList.java:211)
at java.util.LinkedList.remove(LinkedList.java:526)
at edu.vandy.buggyqueue.model.BuggyQueue.poll(BuggyQueue.java:52)
at edu.vandy.BuggyQueueTest$Consumer.run(BuggyQueueTest.java:104)
at java.lang.Thread.run(Thread.java:745)

Evaluating the Buggy Producer/Consumer
• Key question: what’s the output & why?

Depending on the implementation of the BuggyQueue class & the
underlying LinkedList the app & test program may simply “hang”

6See docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

static class BuggyQueue<E> implements BoundedQueue<E> {

private LinkedList<E> mList = new LinkedList<E>();

public boolean offer(E e) {

if (!isFull()) { mList.add(e); return true; }

else return false;

}

public E poll() {

if (!isEmpty()) return mList.remove(0); else return false; }

...

}

There’s no protection against
critical sections being run by
multiple threads concurrently

Evaluating the Buggy Producer/Consumer
• Key question: what’s the output & why?

Note that this implementation is not synchronized. If multiple threads access a linked list

concurrently, and at least one of the threads modifies the list structurally, it must be synchronized

externally. (A structural modification is any operation that adds or deletes one or more elements;

merely setting the value of an element is not a structural modification.)

http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

7

Common Complexities in
Concurrent Programs

8

• Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities

Common Complexities in Concurrent Programs

See stackoverflow.com/questions/499634/how
-to-detect-and-debug-multi-threading-problems

http://stackoverflow.com/questions/499634/how-to-detect-and-debug-multi-threading-problems

9

• Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.g.

• Deadlock

• Occurs when two or more competing actions are each waiting for the
other to finish, & thus none ever do

Common Complexities in Concurrent Programs

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

10

• Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.g.

• Deadlock

• Starvation

• A thread is perpetually denied
necessary resources to process
its work

Common Complexities in Concurrent Programs

See en.wikipedia.org/wiki/Starvation_(computer_science)

https://en.wikipedia.org/wiki/Starvation_(computer_science)

11

• Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.g.

• Deadlock

• Starvation

• Race conditions

• Arise when an application
depends on the sequence
or timing of threads for it
to operate properly

Common Complexities in Concurrent Programs

See en.wikipedia.org/wiki/Race_condition

http://en.wikipedia.org/wiki/Race_condition

12

• Concurrent programs are hard to develop & debug, due to various inherent &
accidental complexities, e.g.

• Deadlock

• Starvation

• Race conditions

• Tool limitations

• e.g., behavior in the debugger
doesn’t reflect actual behavior

Common Complexities in Concurrent Programs

See en.wikipedia.org/wiki/Heisenbug

The act of observing a
system can alter its state

http://en.wikipedia.org/wiki/Heisenbug

13

Common Complexities in Concurrent Programs
• Some concurrency complexities can be fixed by applying Java built-in monitor

object mechanisms

synchronized put()
synchronized poll()
synchronized offer()
synchronized poll()

SimpleBlocking
Queue Consumer

poll()offer()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

Producer

14

• There are also helpful techniques for
debugging concurrent software

Common Complexities in Concurrent Programs

See www.drdobbs.com/cpp/multithreaded-debugging-techniques/199200938

http://www.drdobbs.com/cpp/multithreaded-debugging-techniques/199200938

15

• There are also helpful techniques for
debugging concurrent software, e.g.

• Use well-established concurrency
& synchronization patterns &
frameworks

Common Complexities in Concurrent Programs

See en.wikipedia.org/wiki/Concurrency_pattern &
www.dre.Vanderbilt.edu/~schmidt/frameworks.html

https://en.wikipedia.org/wiki/Concurrency_pattern
http://www.dre.vanderbilt.edu/~schmidt/frameworks.html

16

• There are also helpful techniques for
debugging concurrent software, e.g.

• Use well-established concurrency
& synchronization patterns &
frameworks

• Conduct code reviews

Common Complexities in Concurrent Programs

See en.wikipedia.org/wiki/Code_review

https://en.wikipedia.org/wiki/Code_review

17

• There are also helpful techniques for
debugging concurrent software, e.g.

• Use well-established concurrency
& synchronization patterns &
frameworks

• Conduct code reviews

• Apply automated analysis tools

Common Complexities in Concurrent Programs

See www.sqrlab.ca/blog/2012/03/02/static-analysis-tools-for-concurrency

http://www.sqrlab.ca/blog/2012/03/02/static-analysis-tools-for-concurrency

18

• There are also helpful techniques for
debugging concurrent software, e.g.

• Use well-established concurrency
& synchronization patterns &
frameworks

• Conduct code reviews

• Apply automated analysis tools

• Instrument code with logging
& tracing statements

Common Complexities in Concurrent Programs

See www.dre.vanderbilt.edu/~schmidt/PDF/DSIS_Chapter_Waddington.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/DSIS_Chapter_Waddington.pdf

19

End of Evaluating the
Java Monitor Object
Motivating Example

