Introduction to Java Monitor Objects

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Understand what monitors are & know how Java built-in monitor objects can ensure mutual exclusion & coordination between threads

See www.artima.com/insidejvm/ed2/threadsynch.html

Learning Objectives in this Part of the Lesson

• Understand what monitors are & know how Java built-in monitor objects can ensure mutual exclusion & coordination between threads

Note a human known use of monitors

See en.wikipedia.org/wiki/Monitor_(synchronization)

• A monitor provides three capabilities to concurrent programs

- A monitor provides three capabilities to concurrent programs
 - 1. Only one thread at a time has mutually exclusive access to a critical section

See en.wikipedia.org/wiki/Critical_section

- A monitor provides three capabilities to concurrent programs
 - 1. Only one thread at a time has mutually exclusive access to a critical section
 - 2. Threads running in a monitor can block awaiting certain conditions to become true

- A monitor provides three capabilities to concurrent programs
 - 1. Only one thread at a time has mutually exclusive access to a critical section
 - 2. Threads running in a monitor can block awaiting certain conditions to become true
 - 3. A thread can notify one or more threads that conditions they're waiting on have been met

Overview of Built-in Java Monitor Objects

 All objects in Java can be used as built-in monitor objects, which support two types of thread synchronization

- All objects in Java can be used as built-in monitor objects, which support two types of thread synchronization
 - Mutual exclusion allows concurrent access & updates to shared data without race conditions

- All objects in Java can be used as built-in monitor objects, which support two types of thread synchronization
 - Mutual exclusion allows concurrent access & updates to shared data without race conditions

Java's execution environment supports mutual exclusion via an entrance queue & synchronized methods/statements

- All objects in Java can be used as built-in monitor objects, which support two types of thread synchronization
 - Mutual exclusion allows concurrent access & updates to shared data without race conditions
 - Coordination Ensures computations run properly, e.g., in the right order, at the right time, under the right conditions, etc.

- All objects in Java can be used as built-in monitor objects, which support two types of thread synchronization
 - Mutual exclusion allows concurrent access & updates to shared data without race conditions
 - Coordination Ensures computations run properly, e.g., in the right order, at the right time, under the right conditions, etc.

Java's execution environment supports coordination via a wait queue & notification mechanisms

These mechanisms implement a variant of the Monitor Object pattern

See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

- These mechanisms implement a variant of the *Monitor Object* pattern
 - Intent Ensure that only one method runs within an object & allow an object's methods to cooperatively schedule their execution sequences

Michael Staf Harts Robrard

Human Known Use of Monitors

Human Know Use of Monitors

 A human known use of a monitor is an operating room in a hospital

End of Introduction to Java Monitor Objects