
Java ConditionObject

Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand what condition variables are 

• Note a human known use of condition 
variables

• Know what pattern they implement

• Recognize common use cases where 
condition variables are applied

• Recognize the structure & functionality 
of Java ConditionObject

• Know the key methods defined by the
Java ConditionObject class

• Master the use of ConditionObjects
in practice

• Appreciate ConditionObject usage 
considerations

Learning Objectives in this Part of the Lesson



3

Java ConditionObject
Usage Considerations



4

• ConditionObject is a highly flexible synchronization mechanism

Java ConditionObject Usage Considerations

T2

Critical 
Section

T3
lock

Cond
Obj1

Cond
Obj2

T1



5

• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

Critical 
Section

T3
lock

Cond
Obj1

Cond
Obj2

T1

Java ConditionObject Usage Considerations

T2

e.g., threads T1 & T2 can take turns sharing a critical section

Thread T1 accesses 
the critical section, 

while thread T2 waits



6

• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

Critical 
Section

T3
lock

Cond
Obj1

Cond
Obj2

T1 T2

Java ConditionObject Usage Considerations

e.g., threads T1 & T2 can take turns sharing a critical section

Thread T2 accesses 
the critical section, 

while thread T1 waits



7

• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

• A user object can define
multiple ConditionObjects

Critical 
Section

T3
lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations



8

• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

• A user object can define
multiple ConditionObjects

• Each ConditionObject
can provide a separate 
“wait set”

Critical 
Section

T3
lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations



9

• However, a ConditionObject must be used carefully to avoid problems

Java ConditionObject Usage Considerations



10

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}

Java ConditionObject Usage Considerations



11

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• (Re)test state that’s being waited 
for since it may change due to
non-determinism of concurrency

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}

Java ConditionObject Usage Considerations

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html


12

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• (Re)test state that’s being waited 
for since it may change due to
non-determinism of concurrency

• Guard against spurious wakeups

See en.wikipedia.org/wiki/Spurious_wakeup

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}

Java ConditionObject Usage Considerations

A thread might be awoken from 
its waiting state even though 

no thread signaled the CO

http://en.wikipedia.org/wiki/Spurious_wakeup


13

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

Critical 
Section

T3

lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations



14

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Needed to avoid the
“lost wakeup problem”

Critical 
Section

T3

lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations

See docs.oracle.com/cd/E19253-01/816-5137/sync-30

• A thread calls signal() or signalAll()
• Another thread is between the test of the condition & the call to await()
• No threads are waiting

https://docs.oracle.com/cd/E19253-01/816-5137/sync-30/index.html


15

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Needed to avoid the
“lost wakeup problem”

• await() internally releases
& reacquires its associated
lock!

Critical 
Section

T3

lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations



16

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Java ConditionObject Usage Considerations



17

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

• Using signal() is more 
efficient & avoids the 
“Thundering Herd” problem..

Java ConditionObject Usage Considerations

See en.wikipedia.org/wiki/Thundering_herd_problem

https://en.wikipedia.org/wiki/Thundering_herd_problem


18

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Java ConditionObject Usage Considerations

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Conditions under which signal() can be used

See earlier discussion in “Java ConditionObject: Example Application”

The implementation of 
Java ArrayBlockingQueue
demonstrates this issue



19

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Java ConditionObject Usage Considerations

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Conditions under which signal() can be used

public E take() ... {

...

while (count == 0)

notEmpty.await();

return extract();

...

}

See earlier discussion in “Java ConditionObject: Example Application”



20

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Java ConditionObject Usage Considerations

Conditions under which signal() can be used

private void insert(E x) {

items[putIndex] = x;

putIndex = inc(putIndex);

++count;

notEmpty.signal();

}

See earlier discussion in “Java ConditionObject: Example Application”



21

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from wait() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Java ConditionObject Usage Considerations

Conditions under which signal() can be used

Java ArrayBlockingQueue
satisfies both conditions



22

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

• ConditionObject inherits the
wait(), notify(), & notifyAll()
methods from Java Object!!

Java ConditionObject Usage Considerations

Do not mix & match these methods!!!



23

• Name condition object fields to reflect their usage

Java ConditionObject Usage Considerations

Critical 
Section

T3

lock

not
Empty

not
Full

T1
T4

T2

Used to wait until the 
condition is not empty

Used to wait until the 
condition is not full



24

• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

Java ConditionObject Usage Considerations



25

• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

• However, it’s typically hidden
within higher-level abstractions

Java ConditionObject Usage Considerations



26

• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

• However, it’s typically hidden
within higher-level abstractions

• e.g., ArrayBlockingQueue &
LinkedBlockingQueue

Java ConditionObject Usage Considerations

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

usesuses
2

ArrayBlocking

Queue

put()
take()

ReentrantLock

lock()
unlock()

uses

take() put()

Consumer Producer

ConditionObject

await()
signal()
signalAll()

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html


27

End of Java ConditionObject 
Usage Considerations


