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• Understand what condition variables are 

• Note a human known use of condition 
variables

• Know what pattern they implement

• Recognize common use cases where 
condition variables are applied

• Recognize the structure & functionality 
of Java ConditionObject

• Know the key methods defined by the
Java ConditionObject class

• Master the use of ConditionObjects
in practice

• Appreciate ConditionObject usage 
considerations

Learning Objectives in this Part of the Lesson



3

Java ConditionObject
Usage Considerations



4

• ConditionObject is a highly flexible synchronization mechanism

Java ConditionObject Usage Considerations
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• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state
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e.g., threads T1 & T2 can take turns sharing a critical section

Thread T1 accesses 
the critical section, 

while thread T2 waits
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• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state
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e.g., threads T1 & T2 can take turns sharing a critical section

Thread T2 accesses 
the critical section, 

while thread T1 waits
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• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

• A user object can define
multiple ConditionObjects
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• ConditionObject is a highly flexible synchronization mechanism

• Allows threads to cooperatively suspend & resume 
their execution based on shared state

• A user object can define
multiple ConditionObjects

• Each ConditionObject
can provide a separate 
“wait set”
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• However, a ConditionObject must be used carefully to avoid problems

Java ConditionObject Usage Considerations



10

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}

Java ConditionObject Usage Considerations
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• (Re)test state that’s being waited 
for since it may change due to
non-determinism of concurrency

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}
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http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• (Re)test state that’s being waited 
for since it may change due to
non-determinism of concurrency

• Guard against spurious wakeups

See en.wikipedia.org/wiki/Spurious_wakeup

public class 

ArrayBlockingQueue<E> 

... {

...

public E take() ... {

final ReentrantLock lock = 

this.lock;

lock.lockInterruptibly();

try {

while (count == 0)

notEmpty.await();

return extract();

} finally {

lock.unlock();

}

}
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A thread might be awoken from 
its waiting state even though 

no thread signaled the CO

http://en.wikipedia.org/wiki/Spurious_wakeup
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

Critical 
Section

T3

lock

Cond
Obj1

Cond
Obj2

T1
T4

T2

Java ConditionObject Usage Considerations



14

• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Needed to avoid the
“lost wakeup problem”
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See docs.oracle.com/cd/E19253-01/816-5137/sync-30

• A thread calls signal() or signalAll()
• Another thread is between the test of the condition & the call to await()
• No threads are waiting

https://docs.oracle.com/cd/E19253-01/816-5137/sync-30/index.html
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Needed to avoid the
“lost wakeup problem”

• await() internally releases
& reacquires its associated
lock!
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Java ConditionObject Usage Considerations
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

• Using signal() is more 
efficient & avoids the 
“Thundering Herd” problem..

Java ConditionObject Usage Considerations

See en.wikipedia.org/wiki/Thundering_herd_problem

https://en.wikipedia.org/wiki/Thundering_herd_problem
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Java ConditionObject Usage Considerations

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Conditions under which signal() can be used

See earlier discussion in “Java ConditionObject: Example Application”

The implementation of 
Java ArrayBlockingQueue
demonstrates this issue
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle
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Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Conditions under which signal() can be used

public E take() ... {

...

while (count == 0)

notEmpty.await();

return extract();

...

}

See earlier discussion in “Java ConditionObject: Example Application”
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from await() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Java ConditionObject Usage Considerations

Conditions under which signal() can be used

private void insert(E x) {

items[putIndex] = x;

putIndex = inc(putIndex);

++count;

notEmpty.signal();

}

See earlier discussion in “Java ConditionObject: Example Application”
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

Uniform 
waiters

Only one condition expression that 
await() is waiting for is associated 
with the ConditionObject wait set 
& each thread executes the same 
logic when returning from wait() 

One-in & 
one-out

A signal() on the ConditionObject
enables at most one thread to 
proceed 

Java ConditionObject Usage Considerations

Conditions under which signal() can be used

Java ArrayBlockingQueue
satisfies both conditions
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• However, a ConditionObject must be used carefully to avoid problems

• It should (almost) always 
be waited upon in a loop

• It is always used in 
conjunction with a lock

• Choosing between signal()
& signalAll() can be subtle

• ConditionObject inherits the
wait(), notify(), & notifyAll()
methods from Java Object!!

Java ConditionObject Usage Considerations

Do not mix & match these methods!!!
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• Name condition object fields to reflect their usage

Java ConditionObject Usage Considerations
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Used to wait until the 
condition is not empty

Used to wait until the 
condition is not full
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• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

Java ConditionObject Usage Considerations
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• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

• However, it’s typically hidden
within higher-level abstractions

Java ConditionObject Usage Considerations
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• ConditionObject is used in java.util.concurrent & java.util.concurrent.locks

• However, it’s typically hidden
within higher-level abstractions

• e.g., ArrayBlockingQueue &
LinkedBlockingQueue

Java ConditionObject Usage Considerations

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

usesuses
2

ArrayBlocking

Queue

put()
take()

ReentrantLock

lock()
unlock()

uses

take() put()

Consumer Producer

ConditionObject

await()
signal()
signalAll()

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html
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End of Java ConditionObject 
Usage Considerations


