The Guarded Suspension Pattern

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know what pattern condition variables implement

I_C Ii_ent1_thzad—I

|

=

| Client1 | (
|

=/

L

Calling the get method
on an empty queue
suspends the client
thread.

/
/

/
7

7
Z

get_message
|

7|

Message get message () {

Tock.acquire ();

not empty.condition.wait (); = — — — — —
Message m
...
Tock.release (); ## Release lock

S

}

get _message impl (); ## Get the message.

Acquire lock and try to get a message, if awailabe.

while (empty ()) ## Suspend thread while queue is empty.

STV YT]
Client 2 thread
| 1@
-
| Client2 |
_J

L

put_message
|

Message queue

_9

Executing the put method
wakes up the waiting thread
to continue the execution of
the get method where it’s
suspended.

- Message put_message (Message m) {

Acquire lTock and put a message into the queue.
Tock.acquire ();

...

put _message impl (m);

Wake up threads waiting to get a message.

not empty condition.notify ();
lock.release (); ## Release lock.

-

wakes
up
waiting
thread

Implementing Guarded
Suspension with CVs

Implementing Guarded Suspension with CVs

« CVs are most often used to implement the Guarded Suspension pattern

r... ... "
Client 1 thread _ Message get_message () {
| Calling the get method %' ## Acquire Tock and try to get a message, if awailabe.
on an empty queue , Tock.acquire ();
| suspends the client e while (empty ()) ## Suspend thread while queue is empty.
| - | thread. , not_empty.condition.wait (); = - - - - — - -
Client 1 (D ’ Message m = get message_impl (); ## Get the message. |
L — I 7 #Ho... I
' - Tock.release (); ## Release lock |
get_message } |
|
I
put_message [-|— — Message put message (Message m) { |
o ! ## Acquirg lock and put a message into the queue. | wakes
" Client 2 thread’ Message queue lTock.acquire ()3 | up
| | @ _ o | waiting
Executing the put method put_message impl (m); | thread
| wakes up the waiting thread ## Wake up threads waiting to get a message. |
to continue the execution of not _empty condition.notify (); - — = — — — — — — —a
| Client2 | the get method where it's lTock.release (); ## Release Tock.
}

L - — — 4 suspended. \

PATTERN-ORIENTED
SOFTWARE

Require both a lock to be acquired & a precondition
to be satisfied before an operation can be executed

ARCHITECTURE

A Pattern Language for
Distributed Object Computing

See en.wikipedia.org/wiki/Guarded suspension

http://en.wikipedia.org/wiki/Guarded_suspension

Implementing Guarded Suspension with CVs

 This pattern is applied to operations
that can run only when a condition T
is satisfied L
g

ConditionVariable

f L

await()
signal()
signalAll()

Lock 1 = new Lock()

Condition cond =
l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()

doOperationProcessing()
\

Implementing Guarded Suspension with CVs

 This pattern is applied to operations Lock
that can run only when a condition T lock()
is satisfied, e.q., : unlock()

* a lock is acquired = _>§ /
uses

ConditionVariable

await()
signal()
signalAll()

L

f
Lock 1 = new Lock()
Condition cond =
l.newCondition|()
l.lock()
while (conditionNotSatisfied())

cond.await ()
doOperationProcessing()

\

A condition variable is a/ways associated with a lock

Implementing Guarded Suspension with CVs

 This pattern is applied to operations

s Lock
that can run only when a condition T l0ckQ) ==
is satisfied, e.q., o : unlock()

 a precondition holds uses

ConditionVariable

await()
signal()
signalAll()

L

fr

Lock 1 = new Lock()

Condition cond =
l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing()

.

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to]

. : : ock
suspend its execution until thread T, - l0ckQ)
notifies it that shared state it's waiting .| i unlock()
on may now be satisfied . —>§ /

ConditionVariable uses
YOU SHALL

signal()

signalAll()

N

f
Lock 1 = new Lock()
Condition cond =
l.newCondition|()

i:iock()

while (conditionNotSatisfied())
cond.await ()

doOperationProcessing()

.

See www.youtube.com/watch?v=mJ]ZZNHekEQw

http://www.youtube.com/watch?v=mJZZNHekEQw

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to]

. : . ock
suspend its execution until thread T, T 1ock()
notifies it that shared state it's waiting ! unlock()
on may now be satisfied = _>§ /

ConditionVariable uses
await()

signal()

signalAll()

L

fr

Lock 1 = new Lock()

Condition cond =
l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing()

.

Note the tentative nature of “may”..

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. : : Lock
suspend its execution until thread T, T l0ckQ)
notifies it that shared state it's waiting .| - unlock()
on may now be satisfied = —>§ /

ConditionVariable Uses
await()
signal()
signalAll()
(L N
First, a lock must be acquired.. Lock 1 = new Lock ()
Condition cond =
\\\\\\\ 1l.newCondition ()
-
l.lock()
while (conditionNotSatisfied())
cond.await ()
doOperationProcessing()

o

10

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to]

. : . ock
suspend its execution until thread T, T 1ock()
notifies it that shared state it's waiting ! unlock()
on may now be satisfied = _>§ /

ConditionVariable uses
await()

signal()

signalAll()

L

f
Lock 1 = new Lock()

Second, a condition is checked Condition cc_anc_:l =
(in a loop) with the lock held.. 1.newCondition()
1.lock()

~while (conditionNotSatisfied())
cond.await ()
doOperationProcessing()

\

11

Implementing Guarded Suspension with CVs

» In this example thread T, uses a CV to Lock
suspend its execution until thread T, T l0ckQ)
notifies it that shared state it's waiting .| - unlock()
on may now be satisfied . —>§ /

« A condition can be arbitrarily ConditionVariable uses
complex
await()
signal()
signalAll()

N

fr

Lock 1 = new Lock()
Condition cond =
1l .newCondition ()
1l.lock()
while (conditionNotSatisfied())

cond.await ()
doOperationProcessing()

L

12

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()
unlock()

on may now be satisfied

A condition can be arbitrarily
complex

e.g., @ method call, an expression
that involves shared state, etc.

ConditionVariable

N

await()
signal()
signalAll()

fLock 1l = new Lock()
Condition cond =
1l .newCondition|()
1l.lock()
while (conditionNotSatisfied())
cond.await ()

doOperationProcessing()
\

Any state shared between threads must be
protected by a lock associated with the CV

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on may now be satisfied

A condition can be arbitrarily
complex

Lock

T, lock()

unlock()

ConditionVariable

(possibly repeatedly) while the
condition is not satisfied (await()
atomically releases the lock)

1.

o

await()
signal()
signalAll()
The calling thread will block (1ock 1 = new Lock ()

Condition cond =

l.newCondition|()

iock()

Nwhilga\(conditionNotSatisfied())
cond: await ()

doOperationProcessing()

14

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. . . Lock
suspend its execution until thread T, T 1ock0) ==
notifies it that shared state it's waiting ! unlock()
on may now be satisfied - _>§
A condition can be arbitrarily ConditionVariable Ases

complex :

- await()

—>§ signal()
signalAll()
. |
M i
Lock 1 = new Lock()

cond.signal () Condition cond =

\\\ , 1l .newCondition ()

) — 1.lock()
Another thread can signal condition

while (conditionNotSatisfied())
when shared state may now be true cond.await ()

doOperationProcessing()
-

15

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()

on may now be satisfied

A condition can be arbitrarily
complex

await() reacquires the lock &
condition is rechecked in loop

T

unlock()

ConditionVariable

await()

signal()

signalAll()
f |
Lock 1 = new Lock()

Condition cond =
l.newCondition|()

l.lock()

~while (conditionNotSatisfied())

cond.await ()

doOperationProcessing()
\

16

Implementing Guarded Suspension with CVs

In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()
unlock()

on may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

ConditionVariable

fr

-

await()
signal()
signalAll()
Lock 1 = new Lock()

Condition cond =
l.newCondition ()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperatiderocessing()

The lock is released when the
thread is suspended on the CV

Implementing Guarded Suspension with CVs

» In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

« Thread T, is suspended until
thread T, signals the CV

Lock

lock()
unlock()

ConditionVariable

Ases

await()
signal()
signalAll()

18

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

Lock
suspend its execution until thread T, T 1ock() ==
notifies it that shared state it's waiting ! unlock()
on may now be satisfied - _>§ /

ConditionVariable [~ Y5¢°
- await()
- Waiting on a CV releases the lock signal()
& suspends the thread atomically signalAll()
« Thread T, is suspended until
thread T, signals the CV _>§

/ Tn
cond.signal () \\\\\\\\

When a thread is signaled it wakes up
& must re-acquire its associated lock

19

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()

on may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

« Thread T, is suspended until
thread T, signals the CV

unlock()

ConditionVariable

f

After lock is re-acquired the
thread can reevaluate its
condition to see if its satisfied

o

await()
signal()
signalAll()
Lock 1 = new Lock()

Condition cond =
1l .newCondition|()

1.1lock ()
while (conditionNotSatisfied())

//,//r”ESHE.await()

doOperationProcessing()

20

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()
unlock()

on may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

« Thread T, is suspended until
thread T, signals the CV

ConditionVariable

f

If condition is not satisfied
the thread must wait (which

await()
signal()
signalAll()
Lock 1 = new Lock()

Condition cond =
1l .newCondition ()

1l.lock()
while (conditionNotSatisfied())

releases the lock atomically)

.

cond.await ()
doOperationProcessing()

21

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

T,

lock()

on may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

« Thread T, is suspended until
thread T, signals the CV

unlock()

ConditionVariable

f

After the lock is re-acquired & the
condition is satisfied the operation
can proceed (with lock held)

o

await()
signal()
signalAll()
Lock 1 = new Lock()

Condition cond =
1l .newCondition|()

1l.lock()
while (conditionNotSatisfied())

~cond.await ()

doOperationProcessing()

22

End of the Guarded
Suspension Pattern

23

