
Key Methods in the Java ExecutorService
(Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in the Java ExecutorService interface
• Understand other interfaces related 

to ExecutorService
• Know the key methods provided by 

ExecutorService
• These methods submit 1+ tasks 

for asynchronous execution
• These methods also manage the 

lifecycle of tasks & the Executor
Service itself



3

Key Methods in the 
ExecutorService Interface:

Lifecycle Management



4

• An ExecutorService instance 
can be in one of three states

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()



5

• An ExecutorService instance 
can be in one of three states
• Running 

• After being created via
a factory method

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()



6

• An ExecutorService instance 
can be in one of three states
• Running 
• Shutting down

• After being shut down
gracefully or abruptly

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()



7

• An ExecutorService instance 
can be in one of three states
• Running 
• Shutting down
• Terminated

• After all tasks have
completed

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()



8

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



9

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



10

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• But ignores new tasks &

doesn’t process waiting 
tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



11

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



12

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html


13

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface

Java interrupt requests are “voluntary” 
& require cooperation between threads

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility


14

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)
• Returns waiting tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



15

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html


16

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler
• Can silently discard task or throw RejectedExecutionException

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html


17

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface



18

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down

• i.e., in “shutting down” state

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface



19

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• i.e., in “terminated” state

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface



20

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface



21

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

shutdownNow() might reduce the 
blocking time for awaitTermination()

See www.baeldung.com/java-executor-service-tutorial

http://www.baeldung.com/java-executor-service-tutorial


22

• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

See en.wikipedia.org/wiki/Barrier_(computer_science)

Key Methods in the ExecutorService Interface

shutdown*() & awaitTermination() 
provide barrier synchronization

https://en.wikipedia.org/wiki/Barrier_(computer_science)


23

End of Key Methods in 
the Java ExecutorService

(Part 2)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Key Methods in the ExecutorService Interface:�Lifecycle Management
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	End of Key Methods in �the Java ExecutorService�(Part 2)

