
Key Methods in the Java ExecutorService
(Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in the Java ExecutorService interface
• Understand other interfaces related 

to ExecutorService
• Know the key methods provided by 

ExecutorService
• These methods submit 1+ tasks 

for asynchronous execution
• These methods also manage the 

lifecycle of tasks & the Executor
Service itself
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Key Methods in the 
ExecutorService Interface:

Lifecycle Management
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• An ExecutorService instance 
can be in one of three states

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()
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• An ExecutorService instance 
can be in one of three states
• Running 

• After being created via
a factory method

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()
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• An ExecutorService instance 
can be in one of three states
• Running 
• Shutting down

• After being shut down
gracefully or abruptly

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()
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• An ExecutorService instance 
can be in one of three states
• Running 
• Shutting down
• Terminated

• After all tasks have
completed

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting 
down

Running

Terminated

shutdown()/
shutdownNow()
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface



10

• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• But ignores new tasks &

doesn’t process waiting 
tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface

Java interrupt requests are “voluntary” 
& require cooperation between threads

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks
• Active tasks are cancelled by posting an

interrupt request to executor thread(s)
• Returns waiting tasks

public interface ExecutorService
extends Executor {

...
void shutdown();

List<Runnable> shutdownNow(); 
...

Key Methods in the ExecutorService Interface
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html
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• An ExecutorService client can 
initiate shutdown operations to 
manage its lifecycle
• Performs “graceful shutdown” 

that completes active tasks
• Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler
• Can silently discard task or throw RejectedExecutionException

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down

• i.e., in “shutting down” state

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• i.e., in “terminated” state

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

shutdownNow() might reduce the 
blocking time for awaitTermination()

See www.baeldung.com/java-executor-service-tutorial

http://www.baeldung.com/java-executor-service-tutorial
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• Clients of ExecutorService can 
query the status of a shutdown
& wait for termination to finish 
• True if executor shut down
• True if all tasks have completed 

after executor was shut down
• Blocks until all tasks complete

public interface ExecutorService
extends Executor {

...
boolean isShutdown();

boolean isTerminated();

boolean awaitTermination
(long timeout, 
TimeUnit unit) ...;

See en.wikipedia.org/wiki/Barrier_(computer_science)

Key Methods in the ExecutorService Interface

shutdown*() & awaitTermination() 
provide barrier synchronization

https://en.wikipedia.org/wiki/Barrier_(computer_science)
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End of Key Methods in 
the Java ExecutorService

(Part 2)
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