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Learning Objectives in this Part of the Lesson
• Recognize the simple/single feature provided 

by the Java Executor interface
• Understand various implementation choices

for the Executor interface
• Learn how to program a simple “prime 

checker” app  using the Java Executor 
interface & a fixed-sized thread pool 
implementation

• Evaluate the pros & cons of the prime checker 
app & its use of the Java Executor interface
& fixed-size thread pool implementation
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Evaluating the 
PrimeChecker App
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Fixed-sized Thread Pool

• The Java Executor interface enables the transparent tuning & replacement of 
# & type of threads wrt the prime checker app logic itself

Evaluating the PrimeChecker App

new Random().longs(count, sMAX_VALUE - count, sMAX_VALUE)
.forEach(randomNumber -> mExecutor.execute

(new PrimeRunnable(this, randomNumber)));

Cached (Variable-
sized) Thread Pool Work-stealing Thread Pool
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• However, Java Executor has some restrictions
Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
class PrimeRunnable implements Runnable {

...
private final MainActivity mActivity;
...
public PrimeRunnable(MainActivity activity)
{ mActivity = activity; ... }

public void run() {
... mActivity.done(); ...

}
}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
class PrimeRunnable implements Runnable {

...
long isPrime(long n) {
if (n > 3)
for (long factor = 2; 

factor <= n / 2; ++factor) 
if (n / factor * factor == n) 

return factor;
return 0;

} ...

e.g., non-extensible & primality check is applied even if results are computed

Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on 

Java Executor

Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on 

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks 

Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on 

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks 
• Can’t handle runtime configuration 

changes gracefully
• e.g., must restart processing

from the beginning

Evaluating the PrimeChecker App
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• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly 

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on 

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks 
• Can’t handle runtime configuration 

changes gracefully
• The Java Executor is often too simple 

for its own good!

Evaluating the PrimeChecker App
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End of Evaluating the 
Pros & Cons of the Java 

Executor Interface
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