Evaluating the Pros & Gons of

Douglas C. Schmidt
i.schmidt@uanderhilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashuville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Evaluate the pros & cons of the prime checker
app & its use of the Java Executor interface
& fixed-size thread pool implementation

Evaluating the
PrimeChecker App

Evaluating the PrimeChecker App

« The Java Executor interface enables the transparent tuning & replacement of
& type of threads wrt the prime checker app logic itself
new Random() .longs (count, sMAX VALUE - count, sMAX VALUE)

. forEach (randomNumber -> mExecutor.execute
(new PrimeRunnable (this, randomNumber))) ;

Deque Deque Deque

Sub-Task, ,

Sub-Task; 5 Sub-Task; 5
Sub-Task, 4 ﬁ Sub-Task; 4

,,,
\\\\\

22K S RS LSS
“‘--f_po"’ of worker thre?® SeSas
"~ s
4 Pool of worker thre? ‘*--f__po"' of worker thre?®
Cached (Variable-
Fixed-sized Thread Pool sized) Thread Pool Work-stealing Thread Pool

4

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions

Siarting primality computations
e

Brime with smallest factor &
i

 with smallest factor 17

with smallest factor
ot prime with smallest fact
with smallest factor 2

37322 s not prime with smallest factor 2

76:
1 766004629 i5 prime
28824527 is: ot prirme with smallest factor 79

4451966 is not prime with smallest factor 2
679873625 i not prime with smallest factor 3
139079501 is not prime with smatlest factor 11
ot prime with smallest factor 2
1562413821 is prime
ihed primality computations

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.
* One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

class PrimeRunnable implements Runnable ({

private final MainActivity mActivity;

public PrimeRunnable (MainActivity activity)
{ mActivity = activity; ... }

public void run() {
. mActivity.done() ;

}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

* isPrime() tightly coupled w/PrimeRunnable
class PrimeRunnable implements Runnable ({

long isPrime (long n) ({
if (n > 3)
for (long factor = 2;
factor <= n / 2; ++factor)
if (n / factor * factor == n)
return factor;
return O;

}
e.g., hon-extensible & primality check is applied even if results are computed

Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

« The lack of lifecycle operations on
Java Executor

Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.q. Please

« Can’t shutdown the executor or
interrupt/cancel running tasks

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.g.

« Can’t handle runtime configuration
changes gracefully

* e.g., must restart processing
from the beginning

10

Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.g.

« The Java Executor is often too simple
for its own good!

11

End of Evaluating the
Pros & Cons of the Java
Executor Interface

12

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Evaluating the PrimeChecker App
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	End of Evaluating the �Pros & Cons of the Java �Executor Interface

