
Evaluating the Pros & Cons of
the Java Executor Interface

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the simple/single feature provided

by the Java Executor interface
• Understand various implementation choices

for the Executor interface
• Learn how to program a simple “prime

checker” app using the Java Executor
interface & a fixed-sized thread pool
implementation

• Evaluate the pros & cons of the prime checker
app & its use of the Java Executor interface
& fixed-size thread pool implementation

3

Evaluating the
PrimeChecker App

4
Fixed-sized Thread Pool

• The Java Executor interface enables the transparent tuning & replacement of
& type of threads wrt the prime checker app logic itself

Evaluating the PrimeChecker App

new Random().longs(count, sMAX_VALUE - count, sMAX_VALUE)
.forEach(randomNumber -> mExecutor.execute

(new PrimeRunnable(this, randomNumber)));

Cached (Variable-
sized) Thread Pool Work-stealing Thread Pool

5

• However, Java Executor has some restrictions
Evaluating the PrimeChecker App

6

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
class PrimeRunnable implements Runnable {

...
private final MainActivity mActivity;
...
public PrimeRunnable(MainActivity activity)
{ mActivity = activity; ... }

public void run() {
... mActivity.done(); ...

}
}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App

7

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
class PrimeRunnable implements Runnable {

...
long isPrime(long n) {
if (n > 3)
for (long factor = 2;

factor <= n / 2; ++factor)
if (n / factor * factor == n)

return factor;
return 0;

} ...

e.g., non-extensible & primality check is applied even if results are computed

Evaluating the PrimeChecker App

8

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on

Java Executor

Evaluating the PrimeChecker App

9

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks

Evaluating the PrimeChecker App

10

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks
• Can’t handle runtime configuration

changes gracefully
• e.g., must restart processing

from the beginning

Evaluating the PrimeChecker App

11

• However, Java Executor has some restrictions, e.g.
• One-way semantics of runnables tightly

couple PrimeRunnable with MainActivity
• isPrime() tightly coupled w/PrimeRunnable
• The lack of lifecycle operations on

Java Executor, e.g.
• Can’t shutdown the executor or

interrupt/cancel running tasks
• Can’t handle runtime configuration

changes gracefully
• The Java Executor is often too simple

for its own good!

Evaluating the PrimeChecker App

12

End of Evaluating the
Pros & Cons of the Java

Executor Interface

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Evaluating the PrimeChecker App
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	End of Evaluating the �Pros & Cons of the Java �Executor Interface

