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Learning Objectives in this Part of the Lesson

« Evaluate the pros & cons of the prime checker
app & its use of the Java Executor interface
& fixed-size thread pool implementation
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Evaluating the PrimeChecker App

« The Java Executor interface enables the transparent tuning & replacement of
# & type of threads wrt the prime checker app logic itself
new Random() .longs (count, sMAX VALUE - count, sMAX VALUE)

. forEach (randomNumber -> mExecutor.execute
(new PrimeRunnable (this, randomNumber))) ;
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Evaluating the PrimeChecker App

« However, Java Executor has some restrictions

Siarting primality computations
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Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.
* One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

class PrimeRunnable implements Runnable ({

private final MainActivity mActivity;

public PrimeRunnable (MainActivity activity)
{ mActivity = activity; ... }

public void run() {
. mActivity.done() ;

}

This tight coupling complicates runtime configuration changes




Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

* isPrime() tightly coupled w/PrimeRunnable
class PrimeRunnable implements Runnable ({

long isPrime (long n) ({
if (n > 3)
for (long factor = 2;
factor <= n / 2; ++factor)
if (n / factor * factor == n)
return factor;
return O;

}
e.g., hon-extensible & primality check is applied even if results are computed
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» However, Java Executor has some restrictions, e.g.

« The lack of lifecycle operations on
Java Executor




Evaluating the PrimeChecker App

» However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.q. Please

« Can’t shutdown the executor or
interrupt/cancel running tasks




Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.g.

« Can’t handle runtime configuration
changes gracefully

* e.g., must restart processing
from the beginning
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Evaluating the PrimeChecker App

« However, Java Executor has some restrictions, e.g.

» The lack of lifecycle operations on
Java Executor, e.g.

« The Java Executor is often too simple
for its own good!
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End of Evaluating the
Pros & Cons of the Java
Executor Interface
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