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Learning Objectives in this Part of the Lesson
• Recognize the single simple feature provided by the Java Executor interface
• Understand various implementation choices for the Executor interface
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Implementation Choices for 
the Java Executor Interface
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• The Executor interface can be implemented via 
different types of thread pooling mechanisms

Overview of the Java Executor Interface
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• Executor configuration is often performed just once
to select the “execution policy” for tasks passed to it

Overview of the Java Executor Interface
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• The “execution policy” for a group of tasks defines
several properties

Overview of the Java Executor Interface
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• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed

• e.g., a existing thread in the pool, a new 
thread created/added to the pool, etc.

Overview of the Java Executor Interface

There’s even a single threaded implementation of Executor!
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• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed

• e.g., FIFO, LIFO, priority order, etc.

Overview of the Java Executor Interface
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• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently

• e.g., is the maximum # of tasks 
limited by the # of CPU cores or 
by some other factor?

Overview of the Java Executor Interface
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• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently
• If not all tasks can be executed due to 

system overload which task(s) should be
rejected & how should an app be notified
• e.g., should execute() fail silently vs.

throw RejectedExecutionException

Overview of the Java Executor Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html
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• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently
• If not all tasks can be executed due to 

system overload which task(s) should be
rejected & how should an app be notified

• What actions (if any) should be performed 
before and/or after executing a task
• e.g., Android AsyncTask’s onPreExecute() 

& onPostExecute() hook methods

Overview of the Java Executor Interface

4. doInBackGround()

Async
Task

1. execute(url)

3. execute(future)

2. onPreExecute()

5. onProgressUpdate()

6. onPostExecute()

Executor

See developer.android.com/reference/android/os/AsyncTask

https://developer.android.com/reference/android/os/AsyncTask
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End of Java Executor 
Implementation Choices
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