
Java Executor Implementation Choices
Douglas C. Schmidt

d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize the single simple feature provided by the Java Executor interface
• Understand various implementation choices for the Executor interface

Work-stealing
Thread Pool

Fixed-sized
Thread Pool

A Custom 
Thread Pool

Cached 
Thread Pool



3

Implementation Choices for 
the Java Executor Interface



4

• The Executor interface can be implemented via 
different types of thread pooling mechanisms

Overview of the Java Executor Interface

Work-stealing
Thread Pool

Fixed-sized
Thread Pool

A Custom 
Thread Pool

Cached 
Thread Pool



5

• Executor configuration is often performed just once
to select the “execution policy” for tasks passed to it

Overview of the Java Executor Interface

Work-stealing
Thread Pool

A Custom 
Thread Pool

Fixed-sized
Thread Pool

Cached 
Thread Pool



6

• The “execution policy” for a group of tasks defines
several properties

Overview of the Java Executor Interface



7

• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed

• e.g., a existing thread in the pool, a new 
thread created/added to the pool, etc.

Overview of the Java Executor Interface

There’s even a single threaded implementation of Executor!



8

• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed

• e.g., FIFO, LIFO, priority order, etc.

Overview of the Java Executor Interface

FIFO LIFO

Priority order



9

• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently

• e.g., is the maximum # of tasks 
limited by the # of CPU cores or 
by some other factor?

Overview of the Java Executor Interface



10

• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently
• If not all tasks can be executed due to 

system overload which task(s) should be
rejected & how should an app be notified
• e.g., should execute() fail silently vs.

throw RejectedExecutionException

Overview of the Java Executor Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html


11

• The “execution policy” for a group of tasks defines
several properties, e.g.
• In which thread will a task be executed
• In which order will tasks be executed
• How many tasks can run concurrently
• If not all tasks can be executed due to 

system overload which task(s) should be
rejected & how should an app be notified

• What actions (if any) should be performed 
before and/or after executing a task
• e.g., Android AsyncTask’s onPreExecute() 

& onPostExecute() hook methods

Overview of the Java Executor Interface

4. doInBackGround()

Async
Task

1. execute(url)

3. execute(future)

2. onPreExecute()

5. onProgressUpdate()

6. onPostExecute()

Executor

See developer.android.com/reference/android/os/AsyncTask

https://developer.android.com/reference/android/os/AsyncTask


12

End of Java Executor 
Implementation Choices


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Implementation Choices for the Java Executor Interface
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	End of Java Executor Implementation Choices

