
Java Semaphore
Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Module
• Understand the concept of semaphores 
• Be aware of the two types of 

semaphores
• Note a human known use of 

semaphores 
• Recognize the structure & functionality 

of Java Semaphore
• Know the key methods defined by the

Java Semaphore class
• Learn how Java semaphores enable 

multiple threads to 
• Mediate access to a limited number 

of shared resources
• Coordinate the order in which

operations occur 
• Appreciate Java Semaphore usage considerations



3

Java Semaphore 
Usage Considerations



4

Java Semaphore Usage Considerations
• Semaphore is more flexible than the more simple Java synchronizers



5

• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation

Java Semaphore Usage Considerations



6

• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation
• Its acquire() & release() methods 

need not be fully bracketed

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")

Java Semaphore Usage Considerations



7

• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation
• Its acquire() & release() methods 

need not be fully bracketed

Java Semaphore Usage Considerations

Naturally, this flexibility comes at some additional cost in performance

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")



8

Semaphore2

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources

Java Semaphore Usage Considerations



9

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free

Java Semaphore Usage Considerations



10

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free
• Other mechanisms may be 

needed to select a particular 
free resource
• e.g., a List, HashMap, etc.

Java Semaphore Usage Considerations

See docs.oracle.com/javase/8/docs/technotes/guides/collections

https://docs.oracle.com/javase/8/docs/technotes/guides/collections


11

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free
• Other collections may be 

needed to select a particular 
free resource
• e.g., a List, HashMap, etc.

Java Semaphore Usage Considerations

These collections require synchronizers to ensure thread-safety



12

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls

Java Semaphore Usage Considerations



13

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();

try { 
for (;;) {
// Do something not 
// involving semaphore

} 
} finally { 
semaphore.release(); 

}
}

Other thread(s) won’t be able to acquire 
the semaphore in a timely manner



14

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();
...

semaphore.release(); 
semaphore.release(); 
semaphore.release(); 

}

These extra calls to release() 
will allow too many threads 
to acquire the semaphore



15

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(count);

Resource acquireResource() {
semaphore.acquire();

// Obtain relevant 
// resource from the pool

semaphore.release(); 
return resource;

}

void releaseResource
(Resource resource) {

// Return the resource to 
// the pool.
semaphore.release();

}

This semaphore should have 
been held for the duration of the 

returned resource’s utilization



16

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held
• Acquiring a semaphore & 

forgetting to release it

Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();

... // Critical section
return;

}

Java Semaphore Usage Considerations

The semaphore may 
be locked indefinitely!



17

• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held
• Acquiring a semaphore & 

forgetting to release it

Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();
try {
... // Critical section
return;

} finally {
semaphore.release();

}
}

Java Semaphore Usage Considerations

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Use the try/finally idiom to ensure a fully-bracketed 
semaphore is always released, even if exceptions occur

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html


18

• Semaphores are rather limited
synchronizers that don’t scale to 
complex coordination use cases

Java Semaphore Usage Considerations



19

• Semaphores are rather limited
synchronizers that don’t scale to 
complex coordination use cases
• Java ConditionObjects may be 

a better choice for complex 
coordination use-cases

Java Semaphore Usage Considerations

See upcoming lessons on “Java ConditionObject”



20

End of Java Semaphore 
Usage Considerations


	Slide Number 1
	Learning Objectives in this Part of the Module
	Java Semaphore �Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	Java Semaphore Usage Considerations
	End of Java Semaphore Usage Considerations

