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Learning Objectives in this Part of the Module
• Understand the concept of semaphores 
• Be aware of the two types of 

semaphores
• Note a human known use of 

semaphores 
• Recognize the structure & functionality 

of Java Semaphore
• Know the key methods defined by the

Java Semaphore class
• Learn how Java semaphores enable 

multiple threads to 
• Mediate access to a limited number 

of shared resources
• Coordinate the order in which

operations occur 
• Appreciate Java Semaphore usage considerations
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Java Semaphore 
Usage Considerations
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Java Semaphore Usage Considerations
• Semaphore is more flexible than the more simple Java synchronizers
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• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation
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• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation
• Its acquire() & release() methods 

need not be fully bracketed

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")
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• Semaphore is more flexible than the more simple Java synchronizers, e.g.
• Can atomically acquire & release 

multiple permits with 1 operation
• Its acquire() & release() methods 

need not be fully bracketed
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Naturally, this flexibility comes at some additional cost in performance

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")
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Semaphore2

• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
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• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free
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• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free
• Other mechanisms may be 

needed to select a particular 
free resource
• e.g., a List, HashMap, etc.

Java Semaphore Usage Considerations

See docs.oracle.com/javase/8/docs/technotes/guides/collections

https://docs.oracle.com/javase/8/docs/technotes/guides/collections
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• When a semaphore is used for a 
resource pool, it tracks the # of 
free resources
• However, it does not track 

which resources are free
• Other collections may be 

needed to select a particular 
free resource
• e.g., a List, HashMap, etc.
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These collections require synchronizers to ensure thread-safety
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();

try { 
for (;;) {
// Do something not 
// involving semaphore

} 
} finally { 
semaphore.release(); 

}
}

Other thread(s) won’t be able to acquire 
the semaphore in a timely manner
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();
...

semaphore.release(); 
semaphore.release(); 
semaphore.release(); 

}

These extra calls to release() 
will allow too many threads 
to acquire the semaphore
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held

Java Semaphore Usage Considerations
Semaphore semaphore = 
new Semaphore(count);

Resource acquireResource() {
semaphore.acquire();

// Obtain relevant 
// resource from the pool

semaphore.release(); 
return resource;

}

void releaseResource
(Resource resource) {

// Return the resource to 
// the pool.
semaphore.release();

}

This semaphore should have 
been held for the duration of the 

returned resource’s utilization
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held
• Acquiring a semaphore & 

forgetting to release it

Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();

... // Critical section
return;

}

Java Semaphore Usage Considerations

The semaphore may 
be locked indefinitely!
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• Semaphores can be tedious & 
error-prone to program due to
common traps & pitfalls, e.g.
• Holding a semaphore for a 

long time without needing it
• Releasing a semaphore more

times than needed
• Prematurely releasing a semaphore 

that should have been held
• Acquiring a semaphore & 

forgetting to release it

Semaphore semaphore = 
new Semaphore(1);

void someMethod() {
semaphore.acquire();
try {
... // Critical section
return;

} finally {
semaphore.release();

}
}

Java Semaphore Usage Considerations

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Use the try/finally idiom to ensure a fully-bracketed 
semaphore is always released, even if exceptions occur

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
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• Semaphores are rather limited
synchronizers that don’t scale to 
complex coordination use cases
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• Semaphores are rather limited
synchronizers that don’t scale to 
complex coordination use cases
• Java ConditionObjects may be 

a better choice for complex 
coordination use-cases

Java Semaphore Usage Considerations

See upcoming lessons on “Java ConditionObject”
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End of Java Semaphore 
Usage Considerations
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