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Learning Objectives in this Part of the Lesson
• Understand the concept of mutual 

exclusion in concurrent programs
• Note a human-known use of mutual

exclusion
• Recognize the structure & functionality

of Java ReentrantLock
• Be aware of reentrant mutex semantics
• Know the key methods defined by

the Java ReentrantLock class
• Master how to use ReentrantLock

in practice
• Appreciate Java ReentrantLock

usage considerations
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ReentrantLock Usage
Considerations
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• ReentrantLock must be used 
via a “fully bracketed” protocol

ReentrantLock Usage Considerations

The thread that acquires the lock 
must be the one to release it

void someMethod() {
ReentrantLock lock 
= this.lock;

lock.lock();
try { ... 
} finally { 

lock.unlock(); 
}

}
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• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern

ReentrantLock Usage Considerations

See www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf

void someMethod() {
ReentrantLock lock 
= this.lock;

lock.lock();
try { ... 
} finally { 

lock.unlock(); 
}

}

The finally clause ensures 
that the lock is released on 
all paths out the try clause

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/locking-patterns.pdf
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• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern
• Implemented implicitly via

Java synchronized methods 
& statements

ReentrantLock Usage Considerations
void someMethod() {

synchronized (this) {
... 

}
}

synchronized void anotherMethod() 
{

...
}

See lesson on “Java Built-in Monitor Object”
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• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern
• Implemented implicitly via

Java synchronized methods 
& statements

• This pattern is commonly used
in C++ (& C#) via constructors 
& destructors

void write_to_file
(std::ofstream &file,
const std::string &msg) 

{
static std::mutex mutex;

std::lock_guard<std::mutex> 
lock(mutex);

file << msg << std::endl;
}

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
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• ReentrantLock supports “recursive mutex” semantics where a lock may be 
acquired multiple times by the same thread, without causing self-deadlock

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Reentrant_mutex

https://en.wikipedia.org/wiki/Reentrant_mutex
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls

ReentrantLock Usage Considerations
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
try { 

for (;;) {
// Do something that 
// doesn’t involve lock

} 
} finally { 

lock.unlock(); 
}

}
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
... // Critical section
return;

}

This lock may be 
locked indefinitely!
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
try {

... // Critical section
return;

} finally {
lock.unlock();

} 
}

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Use the try/finally idiom to ensure a fully-bracketed 
semaphore is always released, even if exceptions occur

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• or has already been 

released

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

// lock.lock();
try { 

... // Critical section 
} finally { 

lock.unlock(); 
}

}
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• Accessing a resource without 

acquiring a lock for it first 
• or after releasing it

Compare with lesson on “Java Built-in Monitor Objects”

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

// lock.lock();
try { 

... // Critical section 
} finally { 

// lock.unlock(); 
}

}
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• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• Accessing a resource without 

acquiring a lock for it first 
• Calling lock() within the try block

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

try { 
lock.lock();
... // Critical section 

} finally { 
lock.unlock(); 

}
}

Chaos & insanity will result if 
lock() throws an exception!
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End of Java ReentrantLock
Usage Considerations
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