
Java ReentrantLock
Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the concept of mutual 

exclusion in concurrent programs
• Note a human-known use of mutual

exclusion
• Recognize the structure & functionality

of Java ReentrantLock
• Be aware of reentrant mutex semantics
• Know the key methods defined by

the Java ReentrantLock class
• Master how to use ReentrantLock

in practice
• Appreciate Java ReentrantLock

usage considerations



3

ReentrantLock Usage
Considerations



4

• ReentrantLock must be used 
via a “fully bracketed” protocol

ReentrantLock Usage Considerations

The thread that acquires the lock 
must be the one to release it

void someMethod() {
ReentrantLock lock 
= this.lock;

lock.lock();
try { ... 
} finally { 

lock.unlock(); 
}

}



5

• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern

ReentrantLock Usage Considerations

See www.dre.vanderbilt.edu/~schmidt/PDF/locking-patterns.pdf

void someMethod() {
ReentrantLock lock 
= this.lock;

lock.lock();
try { ... 
} finally { 

lock.unlock(); 
}

}

The finally clause ensures 
that the lock is released on 
all paths out the try clause

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/locking-patterns.pdf


6

• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern
• Implemented implicitly via

Java synchronized methods 
& statements

ReentrantLock Usage Considerations
void someMethod() {

synchronized (this) {
... 

}
}

synchronized void anotherMethod() 
{

...
}

See lesson on “Java Built-in Monitor Object”



7

• ReentrantLock must be used 
via a “fully bracketed” protocol
• This design is known as 

the “Scoped Locking” pattern
• Implemented implicitly via

Java synchronized methods 
& statements

• This pattern is commonly used
in C++ (& C#) via constructors 
& destructors

void write_to_file
(std::ofstream &file,
const std::string &msg) 

{
static std::mutex mutex;

std::lock_guard<std::mutex> 
lock(mutex);

file << msg << std::endl;
}

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization


8

• ReentrantLock supports “recursive mutex” semantics where a lock may be 
acquired multiple times by the same thread, without causing self-deadlock

ReentrantLock Usage Considerations

See en.wikipedia.org/wiki/Reentrant_mutex

https://en.wikipedia.org/wiki/Reentrant_mutex


9

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls

ReentrantLock Usage Considerations



10

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
try { 

for (;;) {
// Do something that 
// doesn’t involve lock

} 
} finally { 

lock.unlock(); 
}

}



11

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
... // Critical section
return;

}

This lock may be 
locked indefinitely!



12

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

lock.lock();
try {

... // Critical section
return;

} finally {
lock.unlock();

} 
}

See docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Use the try/finally idiom to ensure a fully-bracketed 
semaphore is always released, even if exceptions occur

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html


13

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• or has already been 

released

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

// lock.lock();
try { 

... // Critical section 
} finally { 

lock.unlock(); 
}

}



14

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• Accessing a resource without 

acquiring a lock for it first 
• or after releasing it

Compare with lesson on “Java Built-in Monitor Objects”

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

// lock.lock();
try { 

... // Critical section 
} finally { 

// lock.unlock(); 
}

}



15

• ReentrantLocks can be tedious & 
error-prone to program due to 
common traps & pitfalls, e.g.
• Holding a lock for a long 

time without needing it
• Acquiring a lock & 

forgetting to release it
• Releasing a lock that was

never acquired
• Accessing a resource without 

acquiring a lock for it first 
• Calling lock() within the try block

ReentrantLock Usage Considerations
void someMethod() {

ReentrantLock lock 
= this.lock;

try { 
lock.lock();
... // Critical section 

} finally { 
lock.unlock(); 

}
}

Chaos & insanity will result if 
lock() throws an exception!



16

End of Java ReentrantLock
Usage Considerations


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Slide Number 3
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	ReentrantLock Usage Considerations
	End of Java ReentrantLock�Usage Considerations

