
Introduction to Java 
Volatile Variables

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how Java volatile variables 

provide concurrent programs with thread-
safe mechanisms to read from & write to 
single variables 



3

Overview of Java 
Volatile Variables



4

Overview of Java Volatile Variables
• When a concurrent program is not 

written correctly, the errors tend to 
fall into three categories: atomicity, 
visibility, or ordering

See earlier lesson on “Overview of Atomic Operations”



5

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically

See tutorials.jenkov.com/java-concurrency/volatile.html

http://tutorials.jenkov.com/java-concurrency/volatile.html


6

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically
• Reads & writes go directly to main 

memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data



7

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically
• Reads & writes go directly to main 

memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data

• Volatile reads/writes cannot be 
reordered



8

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically
• Reads & writes go directly to main 

memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data

• Volatile reads/writes cannot be 
reordered
• The Java compiler automatically 

transforms reads & writes on a 
volatile variable into atomic 
acquire & release pairs



9

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons



10

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons, e.g.
• Reads & writes of (most) Java 

primitive variables are atomic
Main Memory

42 13

nv v

write nv=42
…
read nv=42

Main
Thread

If the main thread writes a value to a non-volatile 
(nv) field the next read of that field will get that value



11

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons, e.g.
• Reads & writes of (most) Java 

primitive variables are atomic
• Although multiple-step operations are 

performed at the machine code level 
for variables of types long & double, 
these operations aren’t interleaved 
in a single-threaded program

See docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.7

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.7


12

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs

See en.wikipedia.org/wiki/Volatile_variable

http://en.wikipedia.org/wiki/Volatile_variable


13

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs
• One thread may not see the latest 

value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2



14

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs
• One thread may not see the latest 

value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

7 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 
nv = 7

Thread1 writes a value to a non-volatile field nv, 
which is cached locally in the core for efficiency



15

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs
• One thread may not see the latest 

value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

7 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 
nv = 7

read
nv = 42

When Thread2 subsequently reads the value of 
field nv it gets a different result due to caching



16

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems

See en.wikipedia.org/wiki/Volatile_variable#In_Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java


17

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems
• A value written to a volatile 

variable will always be stored 
in main memory 

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 
v = 7



18

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems
• A value written to a volatile 

variable will always be stored 
in main memory 
• A volatile write “happens-

before” all following reads 
of the same variable

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 
v = 7

See en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before


19

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems
• A value written to a volatile 

variable will always be stored 
in main memory 

• An access to a volatile variable 
will be read from main memory

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

7 7

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

read
v = 7

volatile reads are cheap & volatile writes are cheaper than synchronized statements



20

Overview of Java Volatile Variables
• Volatile guarantees atomicity

See stackoverflow.com/questions/3038203/
is-there-any-point-in-using-a-volatile-long

volatile long foo;
final long A = 0xffffffffffffffffl;
final long B = 0;

new Thread(() -> {
for (int i;; i++) {
foo = i % 2 == 0 ? A : B;

}}).start();

new Thread(() -> {
long fooRead = foo;
if (fooRead != A && fooRead != B)
System.err.println
("foo incomplete write "
+ Long.toHexString(fooRead));

}).start();

If volatile is removed here then 
incomplete writes may occur 

(especially on 32 bit machines)

http://stackoverflow.com/questions/3038203/is-there-any-point-in-using-a-volatile-long


21

Overview of Java Volatile Variables
• Volatile guarantees atomicity

• Reads & writes are atomic for 
all variables declared volatile

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


22

Overview of Java Volatile Variables
• Volatile guarantees atomicity

• Reads & writes are atomic for 
all variables declared volatile

• Reads & writes are always
atomic for Java references

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


23

Overview of Java Volatile Variables
• Volatile guarantees visibility

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

public class MyRunnable
implements Runnable {

private volatile boolean
mIsStopped = false;

public void stopMe() { 
mIsStopped = true; 

} 

public void run() {
while (mIsStopped != true) { 
// a long-running operation

}
...

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


24

volatile write is visible to 
“happens-after” reads

Overview of Java Volatile Variables
• Volatile guarantees visibility

• If an action in thread T1 is
visible to thread T2, the result 
of that action can be observed 
by thread T2

public class MyRunnable
implements Runnable {

private volatile boolean
mIsStopped = false;

public void stopMe() { 
mIsStopped = true; // T1 write

} 

public void run() { // T2 read
while (mIsStopped != true) { 
// a long-running operation

}
...



25

Overview of Java Volatile Variables
• Volatile guarantees ordering public class MyRunnable

implements Runnable {
private volatile boolean

mIsStopped = false;

public void stopMe() { 
mIsStopped = true; 

} 

public void run() {
while (mIsStopped != true) { 
// a long-running operation

}
...

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


26

Overview of Java Volatile Variables
• Volatile guarantees ordering

• Ordering constraints describe 
what order operations are seen 
to occur in different threads

public class MyRunnable
implements Runnable {

private volatile boolean
mIsStopped = false;

public void stopMe() { 
mIsStopped = true; // T1 write

} 

public void run() { // T2 read
while (mIsStopped != true) { 
// a long-running operation

}
...

The write to mIsStopped in T1 must happen-before the T2 read completes



27

Overview of Java Volatile Variables
• Incrementing a volatile is not atomic

Thread1 Thread2
volatile 
value

initialized 0
read value ← 0

read value ← 0
increase 
value by 2 0

increase 
value by 1 0

write back write back → 2 or 1?



28

Overview of Java Volatile Variables
• Incrementing a volatile is not atomic

• If multiple threads try to increment 
a volatile at the same time, an 
update might get lost

Thread1 Thread2
volatile 
value

initialized 0
read value ← 0

read value ← 0
increase 
value by 2 0

increase 
value by 1 0

write back write back → 2 or 1?

Consider using the java.util.concurrent.atomic package, which supports 
atomic increment/decrement & compare-and-swap (CAS) operations



29

End of Introduction 
to Volatile Variables


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of Java �Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	Overview of Java Volatile Variables
	End of Introduction �to Volatile Variables

