
Overview of Java Atomic
Operations & Variables

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Recognize Java programming language

& class library features that provide
atomic operations & variables

3

Overview of Java Atomic
Operations & Variables

4

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity

See www.ibm.com/developerworks/library/j-jtp11234

https://www.ibm.com/developerworks/library/j-jtp11234

5

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

See upcoming lesson on “Java Volatile Variables”

6

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached

See en.wikipedia.org/wiki/Volatile_variable#In_Java

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

7

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached
• e.g., sharing a field

between two threads

class PingPongTest {
private volatile int val = 0;
private int MAX = ...;

public void playPingPong() {
new Thread(() -> { // T2 Listener.
for (int lv = val; lv < MAX;)
if (lv != val) {
print("pong(" + val + ")");
lv = val;

}}).start();

new Thread(() -> { // T1 Changer.
for (int lv = val; val < MAX;) {
val = ++lv;
print("ping(" + lv + ")"));
... Thread.sleep(500); ...

}}).start();
...

See dzone.com/articles/java-volatile-keyword-0

https://dzone.com/articles/java-volatile-keyword-0

8

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached
• e.g., sharing a field

between two threads

class PingPongTest {
private volatile int val = 0;
private int MAX = ...;

public void playPingPong() {
new Thread(() -> { // T2 Listener.
for (int lv = val; lv < MAX;)
if (lv != val) {
print("pong(" + val + ")");
lv = val;

}}).start();

new Thread(() -> { // T1 Changer.
for (int lv = val; val < MAX;) {
print("ping(" + ++lv + ")"));
val = lv;
sleep(500);

}}).start();
...

This program alternates
printing “ping” & “pong”
between threads T1 & T2

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex31

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex31

9

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached
• e.g., sharing a field

between two threads

class PingPongTest {
private volatile int val = 0;
private int MAX = ...;

public void playPingPong() {
new Thread(() -> { // T2 Listener.
for (int lv = val; lv < MAX;)
if (lv != val) {
print("pong(" + val + ")");
lv = val;

}}).start();

new Thread(() -> { // T1 Changer.
for (int lv = val; val < MAX;) {
print("ping(" + ++lv + ")"));
val = lv;
sleep(500);

}}).start();
...

If volatile’s omitted from val’s
definition the program won’t

terminate since val’s not visible

By defining val as volatile reads & writes bypass local caches

10

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached
• e.g., sharing a field

between two threads

class PingPongTest {
private volatile int val = 0;
private int MAX = ...;

public void playPingPong() {
new Thread(() -> { // T2 Listener.
for (int lv = val; lv < MAX;)
if (lv != val) {
print("pong(" + val + ")");
lv = val;

}}).start();

new Thread(() -> { // T1 Changer.
for (int lv = val; val < MAX;) {
print("ping(" + ++lv + ")"));
val = lv;
sleep(500);

}}).start();
...

These reads from
val are atomic

11

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables

• Ensure a variable is read
from & written to main
memory & not cached
• e.g., sharing a field

between two threads

class PingPongTest {
private volatile int val = 0;
private int MAX = ...;

public void playPingPong() {
new Thread(() -> { // T2 Listener.
for (int lv = val; lv < MAX;)
if (lv != val) {
print("pong(" + val + ")");
lv = val;

}}).start();

new Thread(() -> { // T1 Changer.
for (int lv = val; val < MAX;) {
print("ping(" + ++lv + ")"));
val = lv;
sleep(500);

}}).start();
...

This write to val is atomic

12

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations

See upcoming lesson on “Java Atomic Operations & Classes”

13

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

See www.baeldung.com/java-unsafe

http://www.baeldung.com/java-unsafe

14

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

• Its “compare & swap” (CAS)
methods are quite useful

int compareAndSwapInt
(Object o, long offset,
int expected, int updated) {

START_ATOMIC();
int *base = (int *) o;
int oldValue = base[offset];
if (oldValue == expected)

base[offset] = updated;
END_ATOMIC();
return oldValue;

}

See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

15

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

• Its “compare & swap” (CAS)
methods are quite useful

int compareAndSwapInt
(Object o, long offset,
int expected, int updated) {

START_ATOMIC();
int *base = (int *) o;
int oldValue = base[offset];
if (oldValue == expected)

base[offset] = updated;
END_ATOMIC();
return oldValue;

}

See upcoming lesson on “Implementing Java Atomic Operations”

Atomically compare the contents of memory
with a given value & modify contents to a

new given value iff they are the same

16

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

void lock(Object o, long offset){
while (compareAndSwapInt

(o, offset, 0, 1) > 0);
}

void unlock(Object o, long offset){
START_ATOMIC();
int *base = (int *) o;
base[offset] = 0;
END_ATOMIC();

}

See en.wikipedia.org/wiki/Non-blocking_algorithm

http://en.wikipedia.org/wiki/Non-blocking_algorithm

17

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

void lock(Object o, long offset){
while (compareAndSwapInt

(o, offset, 0, 1) > 0);
}

void unlock(Object o, long offset){
START_ATOMIC();
int *base = (int *) o;
base[offset] = 0;
END_ATOMIC();

}

Uses CAS to implement a
simple “mutex” spin-lock

See upcoming lesson on “Implementing Java Atomic Operations”

18

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• It’s designed for use only by

the Java Class Library, not
by normal app programs

• Its “compare & swap” (CAS)
methods are quite useful

• CAS methods can be used
to implement efficient “lock
free” algorithms

• Synchronizers in the Java Class
Library use CAS methods
extensively

See www.youtube.com/watch?v=sq0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

19

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• The Java 9+ VarHandle class

• Defines a standard for invoking
equivalents of the java.util.
concurrent.atomic & sun.misc.
Unsafe operations on fields &
array elements

See docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html

https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html

20

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• The Java 9+ VarHandle class

• Defines a standard for invoking
equivalents of the java.util.
concurrent.atomic & sun.misc.
Unsafe operations on fields &
array elements

• Those operations are mostly
atomic or ordered operations
• e.g., CAS operations or

incrementing atomic fields

See www.baeldung.com/java-variable-handles

class AtomicBoolean ... {
static final VarHandle VALUE;
static {
try {
VALUE = l.findVarHandle
(AtomicBoolean.class,
"value", int.class);

} ...
volatile int value;

boolean compareAndSet
(boolean expected,
boolean updated) {
return VALUE.compareAndSet
(this,
(expected ? 1 : 0),
(updated ? 1 : 0));

}
}

http://www.baeldung.com/java-variable-handles

21

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations, e.g.

• The Java Unsafe class
• The Java 9+ VarHandle class

• Defines a standard for invoking
equivalents of the java.util.
concurrent.atomic & sun.misc.
Unsafe operations on fields &
array elements

• Those operations are mostly
atomic or ordered operations

• The VarHandle class is designed
to be usable by apps, unlike
the Java Unsafe class

See gee.cs.oswego.edu/dl/html/j9mm.html

http://gee.cs.oswego.edu/dl/html/j9mm.html

22

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations
• Atomic classes

See upcoming lesson on “Java Atomic Operations & Classes”

23

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations
• Atomic classes

• Use Java Unsafe or Var
Handle classes internally
to implement “lock-free”
methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

24

Overview of Java Atomic Operations & Variables
• Java supports several types

of atomicity, e.g.
• Volatile variables
• Low-level atomic operations
• Atomic classes

• Use Java Unsafe or Var
Handle classes internally
to implement “lock-free”
methods
• e.g., AtomicLong &

AtomicBoolean

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
& docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

25

End of Overview of Java
Atomic Operations & Variables

	Slide Number 1
	Learning Objectives in this Lesson
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	Overview of Java Atomic Operations & Variables
	End of Overview of Java Atomic Operations & Variables

