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Learning Objectives in this Lesson
• Understand what atomic operations are
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Learning Objectives in this Lesson
• Understand what atomic operations are
• Recognize key concepts associated with 

atomic operations in Java
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Overview of
Atomic Operations
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Overview of Atomic Operations
• Atomic operations ensure changes to 

a field are always consistent & visible 
to other threads

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html
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• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all

Overview of Atomic Operations

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability
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• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all
• i.e., it can’t stop in the middle

& leave an inconsistent state

Overview of Atomic Operations
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• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all

• Any side effects of an atomic 
operation aren’t visible until the 
operation completes

Overview of Atomic Operations
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Key Concepts Related to 
Java Atomic Operations



10

• Three key concepts are associated 
with atomic operations in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Concepts Related to Java Atomic Operations

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;

} 
} 

void decrement() { // Thread T1
for (;;) { 
mCounter--;

} 
} 

...
} 

Key Concepts Related to Java Atomic Operations
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;
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Key Concepts Related to Java Atomic Operations

Mutable shared state
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;

} 
} 

void decrement() { // Thread T1
for (;;) { 
mCounter--;

} 
} 

...
} 

Key Concepts Related to Java Atomic Operations

The behavior of increment() & 
decrement() running concurrently 
is undefined & not predictable.. 
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations

Unsynchronized & 
mutable shared data
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations

Thread T2 may never stop, even 
after Thread T1 sets mDone to true..
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {
boolean a = false;
boolean b = false;

void method1(){ // Thread T1
a = true;
b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (r1 && !r2) && r3; 
// returns true

}
}

Key Concepts Related to Java Atomic Operations
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)
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b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
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// returns true
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}

Key Concepts Related to Java Atomic Operations

Mutable shared state
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• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {
boolean a = false;
boolean b = false;

void method1(){ // Thread T1
a = true;
b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (r1 && !r2) && r3; 
// returns true

}
}

Key Concepts Related to Java Atomic Operations

Fields a & b may appear in thread T2 in 
an order different than set in thread T1!
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End of Overview of 
Atomic Operations
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