
Overview of Atomic Operations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Understand what atomic operations are



3

Learning Objectives in this Lesson
• Understand what atomic operations are
• Recognize key concepts associated with 

atomic operations in Java



4

Overview of
Atomic Operations



5

Overview of Atomic Operations
• Atomic operations ensure changes to 

a field are always consistent & visible 
to other threads

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


6

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all

Overview of Atomic Operations

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability


7

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all
• i.e., it can’t stop in the middle

& leave an inconsistent state

Overview of Atomic Operations



8

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads
• An atomic operation is one that 

effectively happens all at once
or it doesn’t happen at all

• Any side effects of an atomic 
operation aren’t visible until the 
operation completes

Overview of Atomic Operations



9

Key Concepts Related to 
Java Atomic Operations



10

• Three key concepts are associated 
with atomic operations in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Concepts Related to Java Atomic Operations

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


11

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;

} 
} 

void decrement() { // Thread T1
for (;;) { 
mCounter--;

} 
} 

...
} 

Key Concepts Related to Java Atomic Operations



12

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;

} 
} 

void decrement() { // Thread T1
for (;;) { 
mCounter--;

} 
} 

...
} 

Key Concepts Related to Java Atomic Operations

Mutable shared state



13

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects

class NonAtomicOps { 
long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 
mCounter++;

} 
} 

void decrement() { // Thread T1
for (;;) { 
mCounter--;

} 
} 

...
} 

Key Concepts Related to Java Atomic Operations

The behavior of increment() & 
decrement() running concurrently 
is undefined & not predictable.. 



14

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations



15

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations

Unsynchronized & 
mutable shared data



16

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another

class LoopMayNeverEnd { 
boolean mDone = false; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
// Thread T1 write
mDone = true; 

} 

...
} 

Key Concepts Related to Java Atomic Operations

Thread T2 may never stop, even 
after Thread T1 sets mDone to true..



17

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {
boolean a = false;
boolean b = false;

void method1(){ // Thread T1
a = true;
b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (r1 && !r2) && r3; 
// returns true

}
}

Key Concepts Related to Java Atomic Operations



18

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {
boolean a = false;
boolean b = false;

void method1(){ // Thread T1
a = true;
b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (r1 && !r2) && r3; 
// returns true

}
}

Key Concepts Related to Java Atomic Operations

Mutable shared state



19

• Three key concepts are associated 
with atomic operations in Java
• Atomicity deals w/which operations 

have indivisible effects
• Visibility determines when a thread 

can see the effects of another
• Ordering determines when the 

operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {
boolean a = false;
boolean b = false;

void method1(){ // Thread T1
a = true;
b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (r1 && !r2) && r3; 
// returns true

}
}

Key Concepts Related to Java Atomic Operations

Fields a & b may appear in thread T2 in 
an order different than set in thread T1!



20

End of Overview of 
Atomic Operations


	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Overview of�Atomic Operations
	Overview of Atomic Operations
	Overview of Atomic Operations
	Overview of Atomic Operations
	Overview of Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	Key Concepts Related to Java Atomic Operations
	End of Overview of �Atomic Operations

