synopsis of Java
synchronizer Glasses

Douglas C. Schmidt
@ d.schmidi@vanderhilt.edu
- www.dre.vanderhilt.edu/~schmidt

WA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Java Class Purpose

ReentrantLock A reentrant mutual exclusion lock that
extends the built-in monitor lock

capabilities

ReentrantRead Improves performance when resources

WriteLock are read much more often than written

StampedLock A readers-writer lock that's more
efficient than ReentrantReadWriteLock

Semaphore Maintains permits that controls thread
access to limited # of shared resources

 Learn the key synchronizers ConditionObject Allows Thread to block until a condition
defined in the Java class library becomes true

CountDown Allows one or more threads to wait

Latch until a set of operations being
performed in other threads complete

CyclicBarrier Allows a set of threads to all wait for
each other to reach a common barrier
point

Phaser A more flexible reusable

synchronization barrier

Overview of Java
Synchronizer Classes

Overview of Java Synchronizer Classes

« The Java class library defines many synchronizers
* e.g., java.util.concurrent & java.util.concurrent.locks packages

package Added in API level 1
java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for
conditions that is distinct from built-in synchronization and monitors.
The framework permits much greater flexibility in the use of locks and
conditions, at the expense of more awkward syntax.

The Lock interface supports locking disciplines that differ in semantics
(reentrant, fair, etc), and that can be used in non-block-structured
contexts including hand-over-hand and lock reordering algorithms. The
main implementation is ReentrantLock.

package Added in API level 1
java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small
standardized extensible frameworks, as well as some classes that provide useful functionality and are
otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See also
the java.util.concurrent.locks and java.util.concurrent.atomic packages.

See developer.android.com/reference/java/util/concurrent/package-summary.htmil

http://developer.android.com/reference/java/util/concurrent/package-summary.html

Overview of Java Synchronizer Classes

« We cover Java language features & library classes for synchronization

Java Class Purpose

ReentrantLock A reentrant mutual exclusion lock that extends the built-in
monitor lock capabilities

Reentrant Improves performance when resources are read much more
ReadWriteLock often than written

StampedLock A readers-writer lock that’s more efficient than
ReentrantReadWriteLock

Semaphore Maintains permits that control thread access to limited # of
shared resources

ConditionObject Allows Thread to block until a condition becomes true

CountDown Allows one or more Threads to wait until a set of operations
Latch being performed in other Threads complete

Cyclic Allows a set of Threads to all wait for each other to reach a
Barrier common barrier point

Phaser A more flexible reusable synchronization barrier

We show how these features & classes are
implemented & used in Java & in practice

Overview of Java Synchronizer Classes

» These synchronizers are used
extensively in Java applications
& class libraries

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java Virtual Machine

——

C++/C Java/INI

C

System Libraries

Operating System Kernel

@ = = 9

Overview of Java Synchromzer Classes

« ReentrantLock
« A mutual exclusion lock that

<< Java Class>>

XCIL - (®ReentrantLock
extends built-in monitor lock & ReentrantLock()
capabilities @ ReentrantLock(boolean)

@ lock()-void

@ locklnterruptibly()-void

@ tryLock():boolean

@ tryLock(long, TimelUnit)-boolean

@ unlock()void

@ newCondition{):Condition

@ getHoldCount():int

@ isHeldByCurrentThread()-boolean
@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{):boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelength{Condition):int
@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

Overview of Java Synchronizer Classes

 ReentrantLock
<< Java Class>>

(® ReentrantLock

& ReentrantLock()
@ ReentrantLock({boolean)

- “Reentrant” means that the ©lock(vod = =
@ locklnterruptibly()-void

thread holding the lock can ® tryl ock{} boolean

reacquire it without deadlock o tryLock{long, TimeUnit)-boolean

@ unlock()void

@ newCondition{):Condition

@ getHoldCount():int

@ isHeldByCurrentThread()-boolean
@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{):boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuel engthiCondition):int
@ toString()

See en.wikipedia.org/wiki/Reentrancy (computing)

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Overview of Java Synchronizer Classes

« ReentrantLock
<< Java Class>>

(® ReentrantLock

& ReentrantLock()

@ ReentrantLock({boolean)

@ lock()-void

@ locklnterruptibly()-void

@ tryLock():boolean

@ tryLock(long, TimelUnit)-boolean

« Must be “fully bracketed” @ unlock()-void -
_ @ newCondition{):Condition
A thread that acquires a lock @ getHoldCount()-int
must be the one to release it @ isHeldByCurrentThread():boolean

@ isLocked():boolean

& isFair{)-boolean

& hasQueuedThreads{):boolean

& hasQueuedThread(Thread):boolean
EEn & getQueueLength():int

@ hasWaiters(Condition):boolean

@ getWaitQueuelength{Condition):int
@ toString()

See jasleendailydiary.blogspot.com/2014/06/java-reentrant-lock.html

http://jasleendailydiary.blogspot.com/2014/06/java-reentrant-lock.html

Overview of Java Synchronizer Classes

ReentrantReadWritelLock

Improves performance when
resources read more often

than written

UNDERGRADUATE CATALOG

VANDERBILT UNIVERSITY

2014/2015

ion corrected to 18 June 2014

Download a pdf file of the Undergraduate This is the online

of the Undert g d ate Catalog,
Catalog (15.2 MB) printed document cord issued in of each
year. Thi] actu; rint d book
View specific sections of the catalog and m: u ne s printed for
below ach yea ongoing updat: t d p rtme tal

f\mat g 0 to the wsbt of the individual

Contents d epartmen t
Calendar ABOI.IT THE PDFs
Plea: ote the catalogs listed below are in pdf format.
The University Yuwm eed Adobe Re d rto vwewth e pages. If you
do not have Adebe Reader, you can download F e copy
terbil A 5 1
of Trust ttp: //w: .adnbs.cnm roducts/acrobat/readstep2.html.
Fol ore informati n how to work with th pdfs e
Vanderbilt University ur pdf help page.
Eac| hpdfh b okmarks that will e Iy gty u to
Special Programs for sp ections. Select the bookmark ic th\v”t
Undergraduates I fth pdf Note that some of fth pg ntain
ph tographs. Befare pri oto s, ons\d th
Life at Vanderbilt tra time and print
Admission Printed ¢ p
Ptd opie: fthudgdtctlg available
Einancial Information est from the Office of Undergraduate Admlssmns
Ct\g ftthtS ureate
Scholarships and Need- p f nal schools fth
Based Financial Aid lf rom the d approprlate school. Contact
f \mat n for thes: Ffices wvailable on People Finder.
College of Arts & Science
lair School of =
hool of g =
Peabody College
Index

— - !l!lﬂ‘lmm‘ \’

<<Java Class>>
(® ReentrantReadWriteLock

@ ReentrantReadWriteLock()

@ ReentrantReadWriteLock(boolean)
@ writeLock():WriteLock

@ readLock():ReadLock

@ isFair():boolean

@ getReadLockCount():int

@ isWnteLocked():boolean

@ isWriteLockedByCurrentThread():boolean

@ getWriteHoldCount():int

@ getReadHoldCount():int

& hasQueuedThreads():boolean

& hasQueuedThread(Thread):boolean
& getQueuelength():int

© hasWaiters(Condition):boolean

@ getWaitQueuelLength(Condition):int
@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/locks/ReentrantReadWriteLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

Overview of Java Synchronizer Classes

« ReentrantReadWritelLock

« Has many features
« Both a blessing & a curse..

s Reentrancy

This lock allows both readers and writers to reacquire read or write
locks in the style of a ReentrantLock. Non-reentrant readers are not
allowed until all write locks held by the writing thread have been
released.

Additionally, a writer can acquire the read lock, but not vice-versa.
Among other applications, reentrancy can be useful when write locks
are held during calls or callbacks to methods that perform reads under
read locks. If a reader tries to acquire the write lock it will never
succeed.

Lock downgrading

Reentrancy also allows downgrading from the write lock to a read lock,
by acquiring the write lock, then the read lock and then releasing the
write lock. However, upgrading from a read lock to the write lock is not
possible.

Interruption of lock acquisition

The read lock and write lock both support interruption during lock
acquisition.

Condition support

The write lock provides a Condition implementation that behaves in
the same way, with respect to the write lock, as the Condition

implementation provided by newCondition() does for ReentrantLock.
This Condition can, of course, only be used with the write lock.

The read lock does not support a Condition and
readLock() .newCondition() throws UnsupportedOperationException.

11

Overview of Java Synchronizer Classes

« StampedLock

« A readers-writer lock that's
more efficient than a
ReentrantReadWriteLock

UNDERGRADUATE CATALOG

VANDERBILT UNIVERSITY

2014/2015

Containing general information and courses of study for the 2014/2015 sessien corrected to 18 June 2014

Download a pdf file of the Undergraduate This is the online version of the Undergraduate Catalog, a

Catalog (15.2 MB) printed document of record issued in the fall of each
year. The online version mirrors the actual printed book
View specific sections of the catalog and is not updated until the new edition is printed for
below each year. For ongoing updates to departmental
information, go to the website of the individual
Contents department.
Calendar ABOUT THE PDFs
Please note the catalogs listed below are in pdf format.
The University You will need Adobe Reader to view these pages. If you
do not have Adecbe Reader, you can download a free copy
Vanderbilt University Board at
of Trust http://www.adobe.com/products/acrobat/readstep2.html.
For more information on how to work with these pdfs, see
Vanderbilt University our pdf help page.
Each pdf has beokmarks that will easily navigate you to
Special Programs for specific sections. Select the bookmark icon in the left
Undergraduates panel of the pdf. Note that some of the pages contain
photographs. Before printing photo pages, consider the
Life at vanderbilt extra time and printer ink required.
Admission Printed copies
printed copies of the Undergraduate Catalog are available
Einancial Information on request from the Office of Undergraduate Admissions.
Catalogs of the Graduate Scheol and post-baccalaureate
Scholarships and Need- professional schools of the university are available on
Based Financial Aid request from the dean of the appropriate school. Contact
information for these offices is available on People Finder.
College of Arts & Science
Blair School of Music
School of Fngineering
Peabody College
Index

[

m‘ \‘

<< Java Class=>=
(& StampedLock

@ StampedLock()

@ writeLock():long

@ tnyWriteLock():long

@ tnyWiteLock(long, TimeUnit):long
@ writeLocklnterruptibly():long

@ readLock():long

@ tryReadlLock():long

@ tryReadLock(long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead():long

@ validate(long):-boolean

@ unlockWrite({long):void

@ unlockRead(long):void

@ unlock{long):void

@ tryConvertToWrteLock(long):long
@ tryConvertToReadLock(long):long
@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite()-boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadLockCount():int

@ toString()

@ asReadLock().Lock

@ asWriteLock():Lock

@ asReadWriteLock():ReadWriteLock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

Overview of Java Synchronizer Classes

« StampedLock

<< Java Class=>=

(& StampedLock

@ StampedLock()

@ writeLock():long

@ tnyWiteLock():long

@ tn/WiteLock({long, TimeUnit):long
@ writeLocklnterruptibly():long

@ readLock():long

@ tryReadLock():long

@ tryReadLock(long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead():long

@ validate(long):-boolean

@ unlockWrite({long):void

@ unlockRead(long):void

@ unlock{long):void

@ tryConvertToWriteLock(long):long
@ tryConvertToReadLock(long):long
@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite()-boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadLockCount():int

@ toString()

@ asReadLock().Lock

@ asWriteLock():Lock

@ asReadWriteLock():ReadWriteLock

13

Overview of Java Synchronizer Classes

« StampedLock

« Also supports “lock
upgrading”

Class | Classe

ECONOMY CLASS /

Flight & Date | Vol et date

“ !NH‘ g il ‘ ¥ 1

L

Mirine use | A usage Interne

. 0081A

YYC27670

<< Java Class=>=

(& StampedLock

Boarding Pass | Carte d'accés & bord

@ StampedLock()

@ writeLock():long

@ tnyWiteLock():long

@ tn/WiteLock({long, TimeUnit):long
@ writeLocklnterruptibly():long

@ readLock():long

@ tryReadLock():long

@ tryReadLock(long, TimeUnit):long
@ readLockinterruptibly():long

@ tryOptimisticRead():long

@ validate(long):-boolean

@ unlockWrite({long):void

@ unlockRead(long):void

@ unlock{long):void

@ tryConvertToWriteLock(long):long
@ tryConvertToReadLock(long):long
@ tryConvertToOptimisticRead(long):long
@ tryUnlockWrite()-boolean

@ tryUnlockRead():boolean

@ isWriteLocked():boolean

@ isReadLocked():boolean

@ getReadLockCount():int

@ toString()

@ asReadLock().Lock

@ asWriteLock():Lock

@ asReadWriteLock():ReadWriteLock

14

Overview of Java Synchronizer Classes

« Semaphore

« Maintains permits that control
thread access to limited # of
shared resources

<<Java Class>>
(9 Semaphore

& Semaphore(int)

& Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

@ tryAcquire():boolean

@ tryAcquire(long, TimeUnit):boolean
@ release():void

@ acquire(int):void

@ acquireUninterruptibly(int):void

@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean

& getQueueLength():int

@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Java Synchronlzer Classes

« Semaphore

« Operations need not be
fully bracketed..

ping:
PingPongThread

%

run()

print("ping")

1

Semaphores

PingPongThread

pong : —)é

run()

print("pong")

0

<<Java Class>>
(9 Semaphore

& Semaphore(int)

& Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

@ tryAcquire():boolean

@ tryAcquire(long, TimeUnit):boolean
@ release():void

@ acquire(int):void

@ acquireUninterruptibly(int):void

@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean

& getQueueLength():int

@ toString()

16

Overview of Java Synchronizer Classes

« ConditionObject
« Allows a thread to wait until

<<Java Class>>
(9 ConditionObject

some condition become true & ConditionObject()

& signal():void

& signalAll():void

& awaitUninterruptibly():void

¢ await():void

? ¢ awaitNanos(long):long

' awaitUntil(Date):boolean
 await(long, TimeUnit):boolean

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronlzer Classes

- ConditionObject <<Java Class>>
(9 ConditionObject
& ConditionObject()
- Always used in conjunction et o signal():void
with a ReentrantLock J signalAll():void
& awaitUninterruptibly():void
¢ await():void
¢ awaitNanos(long):long
=<Java Class>> o awaitUntil(Date):boolean
(©ReentrantLock await(long, TimeUnit):boolean
@ ReentrantLocky)
@ ReentrantLock{boolean)
@ lock():void

@ lockinterruptibly()-void

@ tryLock():boolean

@ tryLock(long, Timelnit):boolean
@ unlock():void

@ newCondition():Condition

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Overview of Java Synchronizer Classes

« CountDownlLatch
<<Java Class>=>

+ Allows one or more threads to wait on the ® CountDownLatch
completion of operations in other threads

& CountDownLatch(int)

@ await():void

@ await(long, TimeUnit):boolean
@ countDown():void

@ getCount():long

@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

Overview of Java Synchronizer Classes

CyclicBarrier <<Java Class>>

« Allows a set of threads to all wait for each & CyclicBarrier
other to reach a common barrier point

& CyclicBarrier(int,Runnable)
& CyclicBarrier(int)

@ getParties():int

@ await():int

@ await(long, TimeUnit):int

@ isBroken():boolean

@ reset():void

@ getNumberWaiting():int

Al

A

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

Overview of Java Synchronizer Classes

« Phaser <<Java Class>>

A more flexible, reusable, & dynamic _ ©Phaser
I i Phaser()
barrier synchronizer that subsumes & Phaser(int)

CyclicBarrier & CountDownlLatch & Phaser(Phaser)
, & Phaser(Phaser,int)
@ register():int
@ bulkRegister(int):int
@ arrive():int
@ arriveAndDeregister():ini
@ arriveAndAwaitAdvance():ini
@ awaitAdvance(int):int
@ awaitAdvancelnterruptibly(int):int
@ awaitAdvancelnterruptibly(int,long, TimeUnit):int
@ forceTermination():voic
& getPhase():int
@ getRegisteredParties():int
@ getArrivedParties():int
@ getUnarrivedParties():int
@ getParent():Phaser
@ getRoot():Phaser
@ isTerminated():boolean
<> onAdvance(int,int):boolean
@ toString()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

End of Synopsis of Java
Synchronizer Classes

22

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of Java Synchronizer Classes
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	End of Synopsis of Java Synchronizer Classes

