
Types of Java Synchronizer 
Capabilities (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Category Definition

Atomic 
operations

An action that effectively happens all at 
once or not at all

Mutual 
exclusion

Allows concurrent access & updates to 
shared mutable data without race 
conditions

Coordination Ensures computations run properly, 
e.g., in the right order, at the right time, 
under the right conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must stop at 
a certain point & cannot proceed until 
all other thread(s) reach this barrier

• Be aware of the Java memory model
• Understand the purpose of Java synchronizers
• Recognize the pervasiveness of Java synchronizers
• Know the types of capabilities provided by Java synchronizers

Learning Objectives in this Part of the Lesson



3

Category Definition

Atomic 
operations

An action that effectively happens all at 
once or not at all

Mutual 
exclusion

Allows concurrent access & updates to 
shared mutable data without race 
conditions

Coordination Ensures computations run properly, 
e.g., in the right order, at the right time, 
under the right conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must stop at 
a certain point & cannot proceed until 
all other thread(s) reach this barrier

Learning Objectives in this Part of the Lesson
• Be aware of the Java memory model
• Understand the purpose of Java synchronizers
• Recognize the pervasiveness of Java synchronizers
• Know the types of capabilities provided by Java synchronizers



4

Category Definition

Atomic 
operations

An action that effectively happens all at 
once or not at all

Mutual 
exclusion

Allows concurrent access & updates to 
shared mutable data without race 
conditions

Coordination Ensures computations run properly, 
e.g., in the right order, at the right time, 
under the right conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must stop at 
a certain point & cannot proceed until 
all other thread(s) reach this barrier

• Be aware of the Java memory model
• Understand the purpose of Java synchronizers
• Recognize the pervasiveness of Java synchronizers
• Know the types of capabilities provided by Java synchronizers

Learning Objectives in this Part of the Lesson



5

Types of Java 
Synchronizer Capabilities



6

• Java synchronizers provide various types of capabilities
Types of Java Synchronizer Capabilities

Category Definition

Atomic 
operations

An action that effectively happens 
all at once or not at all

Mutual 
exclusion

Allows concurrent access & 
updates to shared mutable data 
without race conditions

Coordination Ensures computations run 
properly, e.g., in the right order, at 
the right time, under the right 
conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must 
stop at a certain point & cannot 
proceed until all other thread(s) 
reach this barrier



7

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Ensures an action happens all 

at once or not at all

See en.wikipedia.org/wiki/Linearizability

Types of Java Synchronizer Capabilities

https://en.wikipedia.org/wiki/Linearizability


8

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Ensures an action happens all 

at once or not at all
• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

Thread1 Thread2
Long 
field

initialized 0
read field ← 0
increase
field by 1 0

write back → 1
read field ← 1
increase
field by 1 1

write back → 2

tim
e

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Atomicity does not occur on primitive Java 
data types without using synchronizers

Types of Java Synchronizer Capabilities

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


9

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Ensures an action happens all 

at once or not at all
• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

• Atomic ordering is supported by
the Java atomic package

Types of Java Synchronizer Capabilities

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html


10

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Ensures an action happens all 

at once or not at all
• Operations on a field in thread1

occur all at once wrt operations 
on the field in thread2..n

• Atomic ordering is supported by
the Java atomic package

• Atomic ordering is also supported 
by the Java volatile type qualifier

Types of Java Synchronizer Capabilities

See en.wikipedia.org/wiki/Volatile_variable#In_Java

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1

The volatile type qualifier ensures a variable is read 
from & written to main memory & not cached

http://en.wikipedia.org/wiki/Volatile_variable


11

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

See en.wikipedia.org/wiki/Mutual_exclusion

Types of Java Synchronizer Capabilities

https://en.wikipedia.org/wiki/Mutual_exclusion


12See en.wikipedia.org/wiki/Race_condition#Software

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

Thread1

Thread2

Race conditions occur when a program 
depends on the sequence or timing 
of threads for it to operate properly

Shared State

Types of Java Synchronizer Capabilities

https://en.wikipedia.org/wiki/Race_condition


13

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

• Read/write conflicts
• If one thread reads while another 

thread writes concurrently, the field 
that’s read may be inconsistent

See en.wikipedia.org/wiki/Read-write_conflict

tim
e

Thread1 Thread2
Long 
field

initialized 0
read field ← 0
increase
field by 1 0

write back read field ←
→

0 or 
1?

Types of Java Synchronizer Capabilities

Two operations conflict 
if at least one is a write

https://en.wikipedia.org/wiki/Read-write_conflict


14

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

• Read/write conflicts
• Write/write conflicts
• If two threads try to write to same 

field concurrently, the result may 
be inconsistent

tim
e

Thread1 Thread2
Long 
field

initialized 0
read field ← 0

read field ← 0
increase
field by 2 0

increase
field by 1 0

write back write back → 1 or 
2?

Types of Java Synchronizer Capabilities

See en.wikipedia.org/wiki/Write-write_conflict

This can yield a “lost update”

https://en.wikipedia.org/wiki/Write%E2%80%93write_conflict


15

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

• Read/write conflicts
• Write/write conflicts

See en.wikipedia.org/wiki/Memory_ordering

These problems often occur in multi-core processors with “weak” memory 
ordering due to core caches that allow “out-of-order” load & store operations

Types of Java Synchronizer Capabilities

https://en.wikipedia.org/wiki/Memory_ordering


16

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

• Read/write conflicts
• Write/write conflicts
• Mutual exclusion is supported 

by the Java locks package
• e.g., ReentrantLock, Reentrant

ReadWriteLock, StampedLock,
etc.

Types of Java Synchronizer Capabilities

See docs.oracle.com/javase/8/docs/api/java/
util/concurrent/locks/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html


17

• Java synchronizers provide various 
types of capabilities, e.g.
• Atomic ordering
• Mutual exclusion 
• Prevents simultaneous access 

to a shared resource in a 
critical section

• Read/write conflicts
• Write/write conflicts
• Mutual exclusion is supported 

by the Java locks package
• Mutual exclusion is also supported

by the synchronized keyword
in Java built-in monitor objects

Types of Java Synchronizer Capabilities

See www.artima.com/insidejvm/ed2/threadsynch.html

Thread T1

put() take()

Thread T2

Synchronized
Queue
Java 

Monitor Object
synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue
wait()
notify()
notifyAll()

http://www.artima.com/insidejvm/ed2/threadsynch.html


18

End of Types of Java 
Synchronizer Capabilities

(Part 1)


