Tynes of Java Synchronizer
GCapabhilities (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the types of capabilities provided by Java synchronizers

Atomic An action that effectively happens all at
operations once or not at all

Mutual Allows concurrent access & updates to
exclusion shared mutable data without race
conditions

Coordination | Ensures computations run properly,

e.g., in the right order, at the right time,
under the right conditions, etc.

Barrier Ensures that any thread(s) must stop at
synchronization | a certain point & cannot proceed until
all other thread(s) reach this barrier

Learning Objectives in this Part of the Lesson

« Know the types of capabilities provided by Java synchronizers
Category Definition i

Atomic An action that effectively happens all at
operations once or not at all

Mutual Allows concurrent access & updates to
exclusion shared mutable data without race
conditions

Coordination Ensures computations run properly,

e.g., in the right order, at the right time,
under the right conditions, etc.

Barrier Ensures that any thread(s) must stop at
synchronization a certain point & cannot proceed until
all other thread(s) reach this barrier

Learning Objectives in this Part of the Lesson

« Know the types of capabilities provided by Java synchronizers

Crcgor

Atomic An action that effectively happens all at
operations once or not at all

Mutual Allows concurrent access & updates to

exclusion shared mutable data without race
conditions

Coordination Ensures computations run properly,

e.g., in the right order, at the right time,
under the right conditions, etc.

Barrier Ensures that any thread(s) must stop at
synchronization a certain point & cannot proceed until
all other thread(s) reach this barrier

4

Types of Java
Synchronizer Capabilities

Types of Java Synchronizer Capabilities

« Java synchronizers provide various types of capabilities

Atomic An action that effectively happens
operations all at once or not at all

Mutual Allows concurrent access &
exclusion updates to shared mutable data
without race conditions

Coordination | Ensures computations run i
properly, e.g., in the right order, at
the right time, under the right
conditions, etc.

Barrier Ensures that any thread(s) must
synchronization | stop at a certain point & cannot
proceed until all other thread(s)
reach this barrier

Types of Java Synchronlzer Capabilities

« Java synchronizers provide various
types of capabilities, e.qg.

« Atomic ordering

« Ensures an action happens all
at once or not at all

See en.wikipedia.org/wiki/Linearizability

https://en.wikipedia.org/wiki/Linearizability

Types of Java Synchronizer Capabilities

« Java synchronizers provide various Lon

e Thread Thread 9

types of capabilities, e.q. 1 2 field
« Atomic ordering initialized 0
GEJ read field — 0
=1 increase 0

- Operations on a field in thread, field by 1
occur all at once wrt operations write back — 1
on the field in thread, , " read field « 1
increase 1
field by 1

write back — 2

Atomicity does not occur on primitive Java
data types without using synchronizers

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Types of Java Synchronizer Capabilities

« Java synchronizers provide various
types of capabilities, e.q.

« Atomic ordering

« Atomic ordering is supported by
the Java atomic package

Package java.util.concurrent.atomic

A small toolkit of classes that support lock-free thread-safe programming on single variables.

See: Description

Class Summary
Class

AtomicBoolean
Atomicinteger

AtomicintegerArray

AtomicintegerFieldUpdater<T>

AtomicLong

AtomicLongArray

AtomicLongFieldUpdater<T>

AtomicMarkableReference<V>

AtomicReference<V>

AtomicReferenceArray<gE>

AtomicReferenceFieldUpdater<T,V>

AtomicStampedReference<V>

Description
A boolean value that may be updated atomically.
An int value that may be updated atomically.

An int array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile int fields of designated
classes.

A long value that may be updated atomically.

A long array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile long fields of designated
classes.

An AtomicMarkableReference maintains an object
reference along with a mark bit, that can be updated
atomically.

An object reference that may be updated atomically.

An array of object references in which elements may
be updated atomically.

A reflection-based utility that enables atomic updates
to designated volatile reference fields of designated
classes.

An AtomicStampedReference maintains an object
reference along with an integer "stamp"”, that can be
updated atomically.

See docs.orade.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

Types of Java Synchronizer Capabilities

« Java synchronizers provide various
types of capabilities, e.q.

« Atomic ordering

Main Memory

« Atomic ordering is also supported
by the Java volatile type qualifier

The volatile type qualifier ensures a variable is read
from & written to main memory & not cached

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable

Types of Java Synchronizer Capabilities

« Java synchronizers provide various
types of capabilities, e.g.

- Atomic ordering
« Mutual exclusion

e Prevents simultaneous access
to a shared resource in a
critical section

See en.wikipedia.org/wiki/Mutual exclusion

https://en.wikipedia.org/wiki/Mutual_exclusion

Types of Java Synchronizer Capabilities

« Java synchronizers provide various
types of capabilities, e.g. Thread,

« Mutual exclusion

e Prevents simultaneous access
to a shared resource in a
critical section

Thread,
-5

Race condlitions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition

Types of Java Synchronizer Capabilities

« Java synchronizers provide various — S
types of capabilities, e.q. read; TEelop
initialized
« Mutual exclusion GEJ read field
= | increase
field by 1
write back read field
« Read/write conflicts v

« If one thread reads while another
thread writes concurrently, the field
that’s read may be inconsistent

Long
field

Two operations conflict
If at least one is a write

See en.wikipedia.org/wiki/Read-write conflict

https://en.wikipedia.org/wiki/Read-write_conflict

Types of Java Synchronizer Capabilities

e [
initialized 0
« Mutual exclusion GEJ read field — 0
= read field «— 0
i|_1crease 0

field by 2
v increase 0
« Write/write conflicts field by 1
« If two threads try to write to same write back write back — ;?Or

field concurrently, the result may
be inconsistent /

This can yield a "lost update”

See en.wikipedia.org/wiki/Write-write conflict

https://en.wikipedia.org/wiki/Write%E2%80%93write_conflict

Types of Java Synchronizer Capabilities

« Java synchronizers provide various Main Memory

types of capabilities, e.q. m

e Mutual exclusion

Cache 1
13
. . . v
« Write/write conflicts
write read write
nv=7 nv="2 " | nv =42
2

| Thread1 | \ Thread i Thread, |

These problems often occur in multi-core processors with “"weak” memory
ordering due to core caches that allow “out-of-order” load & store operations

See en.wikipedia.org/wiki/Memory ordering

https://en.wikipedia.org/wiki/Memory_ordering

Types of Java Synchronizer Capabilities

° Java Synchronlzers pI‘OVIde Varlous Package java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for conditions that is

types Of Ca pa bi I ities, e . g . distinct from built-in synchronization and monitors.

See: Description

Interface Summary

° M utua I eXCI USion Interface Description

Lock

ReadWriteLock

Class Summary
Class

AbstractOwnableSynchronizer

» Mutual exclusion is supported
by the Java locks package

 e.g., ReentrantLock, Reentrant
ReadWriteLock, StampedLock, | ‘=
etc.

AbstractQueuedLongSynchronizer

AbstractQueuedSynchronizer

ReentrantReadWriteLock

Condition Condition factors out the Object monitor methods (wait, notify
and notifyAll) into distinct objects to give the effect of having
multiple wait-sets per object, by combining them with the use of
arbitrary Lock implementations.

Lock implementations provide more extensive locking operations
than can be obtained using synchronized methods and statements.

A ReadWritelock maintains a pair of associated locks, one for read-
only operations and one for writing.

Description

A synchronizer that may be exclusively owned by a
thread.

A version of AbstractQueuedSynchronizer in which
synchronization state is maintained as a long.

Provides a framework for implementing blocking locks
and related synchronizers (semaphores, events, etc)
that rely on first-in-first-out (FIFO) wait queues.

Basic thread blocking primitives for creating locks and
other synchronization classes.

A reentrant mutual exclusion Lock with the same
basic behavior and semantics as the implicit monitor
lock accessed using synchronized methods and
statements, but with extended capabilities.

An implementation of ReadWriteLock supporting
similar semantics to ReentrantLock.

See docs.oracle.com/javase/8/docs/api/java/

util/concurrent/locks/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html

Types of Java Synchronizer Capabilities

« Java synchronizers provide various
types of capabilities, e.q.

Thread T, —>§ Thread T, —>§
* Mutual exclusion | |
I
: Java |
: but() Monitor Object take():

— — > |synchronized put() &L ——-
synchronized take()

¢

<<contains>>|1

1| <<contains>>

Wait Queue

« Mutual exclusion is also supported \rl,vjt',tfg()

by the synchronized keyword notifyAll()

in Java built-in monitor objects

See www.artima.com/insidejvm/ed2/threadsynch.html

http://www.artima.com/insidejvm/ed2/threadsynch.html

End of Types of Java
Synchronizer Capabilities
(Part 1)

18

