How Java Threads Start & Run

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

5 5

: My

Component : MyThread
onCreate()
' new()
é _________
 Be aware of how a Java thread start() ‘
starts & runs Q run()
|




Learning Objectives in this Part of the Lesson

« Be aware of how a Java thread
starts & runs

 Including traditiona
threads & modern “virtua
threads

I\\ (4

platform’

III

Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to
kernel threads scheduled by the operating system. Platform threads will usually have
a large stack and other resources that are maintained by the operating system.
Platforms threads are suitable for executing all types of tasks but may be a limited
resource.

Platform threads are designated daemon or non-daemon threads. When the Java
virtual machine starts up, there is usually one non-daemon thread (the thread that
typically calls the application's main method). The Java virtual machine terminates
when all started non-daemon threads have terminated. Unstarted daemon threads do
not prevent the Java virtual machine from terminating. The Java virtual machine can
also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are
members of a thread group.

Platform threads get an automatically generated thread name by default.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically
user-mode threads scheduled by the Java virtual machine rather than the operating
system. Virtual threads will typically require few resources and a single Java virtual
machine may support millions of virtual threads. Virtual threads are suitable for
executing tasks that spend most of the time blocked, often waiting for I/O operations
to complete. Virtual threads are not intended for long running CPU intensive
operations.

Virtual threads typically employ a small set of platform threads used as carrier
threads. Locking and I/O operations are the scheduling points where a carrier thread
is re-scheduled from one virtual thread to another. Code executing in a virtual thread
will usually not be aware of the underlying carrier thread, and in particular, the
currentThread() method, to obtain a reference to the current thread, will return the
Thread object for the virtual thread, not the underlying carrier thread.

Virtual threads gets a fixed name by default.

See download.java.net/java/early access/loom

docs/api/java.base/java/lang/Thread.html



https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

Starting Java
Platform Threads




Starting Java Platform Threads

« Multiple layers are involved in creating My

& starting a traditional Java thread (or Component : MyThread
new platform thread)

onCreate()
5 new()

Threading & Synchronization Packages start() |

; ) run
Java Execution Environment (e.g., JVM, ART, etc) ()

System Libraries

Operating System Kernel

See the upcoming lessons on “Managing the Java Thread Lifecycle’




Starting Java Platform Threads

« Multiple layers are involved in creating "My
& starting a traditional Java thread (or Component : MyThread

new platform thread)

» Creating a new Thread object
allocates little system state

* e.g., no kernel resources
are allocated

onCreate()
I — new()




Starting Java Platform Threads

« Multiple layers are involved in creating "My
& starting a traditional Java thread (or Component . MyThread
new platform thread)
onCreate()
I — new()

« The runtime stack & other kernel )

resources are only allocated after start() ‘

the start() method is called Q run()

 Either Thread.start() or Thread
.Builder.OfPlatform.start()

5

See en.wikipedia.org/wiki/Call stack



https://en.wikipedia.org/wiki/Call_stack

Starting Java Platform Threads

« Multiple layers are involved in creating My
& starting a traditional Java thread (or Component . MyThread
new platform thread)
onCreate()
| new()

* The runtime stack & other kernel
resources are only allocated after
the start() method is called

 Either Thread.start() or Thread
.Builder.OfPlatform.start()

The start() method can only be called once per thread object




Starting Java Platform Threads

« Multiple layers are involved in creating My
& starting a traditional Java thread (or Component . MyThread
new platform thread)
onCreate()
| new()

start() ‘

Q run()

» The Java execution environment calls
a thread’s run() hook method after
start() creates its resources

See wiki.c2.com/?HookMethod



http://wiki.c2.com/?HookMethod

Starting Java Platform Threads

« Multiple layers are involved in creating My
& starting a traditional Java thread (or Component : MyThread
new platform thread)

onCreate()

start() ‘

Q run()

» Each thread can run concurrently &

block independently =}0’

10



Starting Java
Virtual Threads

11



Starting Java Virtual Threads

« Fewer layers are involved in creating "My
& starting a Java virtual thread (in Component . MyThread
contrast to a Java platform thread)
onCreate()
T new()
e _____ ]
Threading & Synchronization Packages start() |

; ) run
Java Execution Environment (e.g., JVM, ART, etc) ()

System Libraries

Operating System Kernel

12



Starting Java Virtual Threads

» Fewer layers are involved in creating "My . MyVirtual
& starting a Java virtual thread (in Component " Thread
contrast to a Java platform thread)

. Again, creating a new Thread onCreate()
I — new()

object allocates little system state

* e.g., no kernel resources
are allocated

13



Starting Java Virtual Threads

» Fewer layers are involved in creating "My “MyVirtual
& starting a Java virtual thread (in Component T
contrast to a Java platform thread)

onCreate()
I new()
« Calling Thread.Builder.OfVirtual.start()
does not allocate any runtime stack or ofVirtual() ‘
other kernel resources start() Q run()

<

14



Starting Java Virtual Threads

» Fewer layers are involved in creating "My “MyVirtual
& starting a Java virtual thread (in Component T
contrast to a Java platform thread)

onCreate()
I new()
« Calling Thread.Builder.OfVirtual.start()
does not allocate any runtime stack or ofVirtual() ‘
other kernel resources start() Q run()

 Instead, a virtual thread is multiplexed
over a pool of platform threads

S
A pool of platform thread

15



Starting Java Virtual Threads

« Fewer layers are involved in creating "My “MyVirtual
& starting a Java virtual thread (in Component Thread
contrast to a Java platform thread)

onCreate()
I new()

« Calling Thread.Builder.OfVirtual.start()
does not allocate any runtime stack or ofVirtual() _ ‘
other kernel resources start() Q run()

 Instead, a virtual thread is multiplexed
over a pool of platform threads

The start() method can only be called once per virtual thread object




Starting Java Virtual Threads

« Fewer layers are involved in creating "My “MyVirtual
& starting a Java virtual thread (in Component Thread
contrast to a Java platform thread)

onCreate()
I new()

start() ‘

Q run()

» The Java execution environment calls
a thread’s run() hook method after
start() creates its resources

See wiki.c2.com/?HookMethod



http://wiki.c2.com/?HookMethod

Starting Java Virtual Threads

 Fewer layers are involved in creating My . MyVirtual
& starting a Java virtual thread (in Component Thread
contrast to a Java platform thread)

onCreate()

start() ‘

Q run()

» Each thread can run concurrently &

block independently =}0’

18



Running Java Threads

19



Running Java Threads

A thread (traditional, platform, or
virtual) can generally run any code

Component

- My

onCreate()

public void run () {

// code to run goes here

}

7z

: MyThread

run()

\O

See wiki.c2.com/?HookMethod



http://wiki.c2.com/?HookMethod

Running Java Threads

A thread (traditional, platform, or My
virtual) can generally run any code Component : MyThread

« However, windowing toolkits often
restrict which thread can access
GUI components

onCreate()
I new()

start() ‘

) Q run()

21



Running Java Threads

A thread (traditional, platform, or My
virtual) can generally run any code Component : MyThread

« However, windowing toolkits often
restrict which thread can access
GUI components

* e.g., only the Android UI thread
can access GUI components start() ‘

onCreate()

Q run()

See developer.android.com/training/multiple-threads/communicate-ui.html



https://developer.android.com/training/multiple-threads/communicate-ui.html

Running Java Threads

A thread (traditional, platform, or
virtual) can generally run any code

Component

- My

onCreate()

 Likewise, virtual threads are suitable
for tasks that block most of the time,
often waiting for I/O to complete

7z

: MyThread

Q run()

23



Running Java Threads

A thread (traditional, platform, or My
virtual) can generally run any code Component . MyThread
onCreate()
= new()
. Likewise, virtual threads are suitable T
for tasks that block most of the time, start() ‘
often waiting for I/O to complete Q run()

» Virtual threads are not intended for
long running CPU-intensive operations

24



Running Java Threads

« A thread can live as long as its run() hook "My
method hasn't returned Corﬁponent : MyThread

onCreate()
T new()

start() ‘

) Q run()

25



Running Java Threads

« A thread can live as long as its run() hook "My
method hasn’t returned Component

« The underlying thread scheduler can
suspend & resume a thread many =~ °n¢reatel)
times during its lifecycle new() >

P W SR W 7 vr,.r.%:da :-;:»»- ~ g YN*"'-Ku{&-‘ r
y o < o il e :
S ey o | % -

A "\: .
: ¥, N3 = /
N - A ) v+ ored L 'S

=
-

See en.wikipedia.org/wiki/Scheduling (computing)



https://en.wikipedia.org/wiki/Scheduling_(computing)

Running Java Threads

A thread can live as long as its run() hook
method hasn’t returned

Component

- My

» The underlying thread scheduler can
suspend & resume a thread many

onCreate()

times during its lifecycle

» Scheduler operations are largely invisible
to user code, as long as synchronization
is performed properly..

o

7z

27



Running Java Threads

« For a thread to execute “forever,” its run() "My
hook method needs an infinite loop Component : MyThread
onCreate()
T new()
é _________
start() ‘
Q run()
///
public void run() { ]

while (true) { ... } /

}

28



Running Java Threads

« The thread is dead after run() returns

Rest In
Peace

Component

- My

onCreate()

7z

: MyThread

Q run()

29



Running Java Threads

« The thread is dead after run() returns

A thread can end normally

public void run () {
while (true) {

if (someCondition())
return;

Component

- My

onCreate()

7z

: MyThread

Q run()

30



Running Java Threads

« The thread is dead after run() returns M
Corr.1po>;1ent : MyThread
« Or an uncaught exception can onCreate()
be thrown > new()
é _________
public void run () {
while (true) { start() ‘ 0
run

if (someError())
throw new
SomeException () ;

See www.javamex.com/tutorials/exceptions/exceptions uncaught handler.shtml



http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

Running Java Threads

» The join() method allows one thread to

wait for another thread to complete

: My .
Component : MyThread
onCreate()
T new()
start() |
; )run()

32



Running Java Threads

» The join() method allows one thread to My
wait for another thread to complete Component : MyThread
onCreate()
| new()

start() ‘

) Q run()

Simple form of "barrier synchronization”

See upcoming lessons on “Java Barrier Synchronizers’




Running Java Threads

« The join() method allows one thread to "My
wait for another thread to complete Corﬁponent
« Or a thread can simply evaporate!
onCreate()
> 1
|

34



Running Java Threads

» The join() method allows one thread to My
wait for another thread to complete Corﬁponent
_ _ onCreate()
* The Java execution environment >—

recycles thread resources

35



Running Java Threads

» The join() method allows one thread to My
wait for another thread to complete Corﬁponent

_ _ onCreate() O@
* The Java execution environment >
recycles thread resources O

« e.g., runtime stack of activation
records, thread-local storage, etc.

36



End of How Java
Threads Start & Run

37



