
How Java Threads Start & Run

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving 

code to a thread
• Learn how to pass parameters 

to a Java thread
• Know the differences between Java

platform & virtual threads
• Be aware of how a Java thread 

starts & runs

Learning Objectives in this Part of the Lesson

: My
Component

start()
run()

new()

: MyThread

onCreate()



3

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving 

code to a thread
• Learn how to pass parameters 

to a Java thread
• Know the differences between Java

platform & virtual threads
• Be aware of how a Java thread 

starts & runs
• Including traditional “platform”

threads & modern “virtual”
threads

Learning Objectives in this Part of the Lesson

See download.java.net/java/early_access/loom
/docs/api/java.base/java/lang/Thread.html

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html


4

Starting Java 
Platform Threads 



5

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)

Starting Java Platform Threads

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

: My
Component

start()
run()

new()

: MyThread

onCreate()

See the upcoming lessons on “Managing the Java Thread Lifecycle” 



6

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)
• Creating a new Thread object 

allocates little system state
• e.g., no kernel resources

are allocated

: My
Component

new()

Starting Java Platform Threads
: MyThread

onCreate()



7

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)
• Creating a new Thread object 

allocates little system state
• The runtime stack & other kernel 

resources are only allocated after 
the start() method is called
• Either Thread.start() or Thread 

.Builder.OfPlatform.start()

: My
Component

start()
run()

new()

Starting Java Platform Threads
: MyThread

onCreate()

See en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack


8

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)
• Creating a new Thread object 

allocates little system state
• The runtime stack & other kernel 

resources are only allocated after 
the start() method is called
• Either Thread.start() or Thread 

.Builder.OfPlatform.start()

: My
Component

start()
run()

new()

Starting Java Platform Threads
: MyThread

onCreate()

The start() method can only be called once per thread object



9

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)
• Creating a new Thread object 

allocates little system state
• The runtime stack & other kernel 

resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

: My
Component

start()
run()

new()

Starting Java Platform Threads
: MyThread

onCreate()

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod


10

• Multiple layers are involved in creating 
& starting a traditional Java thread (or 
new platform thread)
• Creating a new Thread object 

allocates little system state
• The runtime stack & other kernel 

resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

• Each thread can run concurrently &
block independently

: My
Component

start()
run()

new()

Starting Java Platform Threads
: MyThread

onCreate()



11

Starting Java 
Virtual Threads 



12

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)

Starting Java Virtual Threads

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

: My
Component

start()
run()

new()

: MyThread

onCreate()



13

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• e.g., no kernel resources

are allocated

: My
Component

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()



14

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• Calling Thread.Builder.OfVirtual.start() 

does not allocate any runtime stack or 
other kernel resources

: My
Component

ofVirtual()
.start() run()

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()



15

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• Calling Thread.Builder.OfVirtual.start() 

does not allocate any runtime stack or 
other kernel resources
• Instead, a virtual thread is multiplexed 

over a pool of platform threads

: My
Component

ofVirtual()
.start() run()

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()



16

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• Calling Thread.Builder.OfVirtual.start() 

does not allocate any runtime stack or 
other kernel resources
• Instead, a virtual thread is multiplexed 

over a pool of platform threads

: My
Component

run()

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()

The start() method can only be called once per virtual thread object

ofVirtual()
.start()



17

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• Calling Thread.Builder.OfVirtual.start() 

does not allocate any runtime stack or 
other kernel resources

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

: My
Component

start()
run()

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod


18

• Fewer layers are involved in creating 
& starting a Java virtual thread (in
contrast to a Java platform thread)
• Again, creating a new Thread 

object allocates little system state
• Calling Thread.Builder.OfVirtual.start() 

does not allocate any runtime stack or 
other kernel resources

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

• Each thread can run concurrently &
block independently

: My
Component

start()
run()

new()

Starting Java Virtual Threads
: MyVirtual

Thread

onCreate()



19

Running Java Threads 



20

• A thread (traditional, platform, or
virtual) can generally run any code

: My
Component

start()
run()

new()

Running Java Threads
: MyThread

onCreate()

public void run(){
// code to run goes here

}

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod


21

• A thread (traditional, platform, or
virtual) can generally run any code
• However, windowing toolkits often 

restrict which thread can access 
GUI components

: My
Component

start()
run()

new()

Running Java Threads
: MyThread

onCreate()



22

• A thread (traditional, platform, or
virtual) can generally run any code
• However, windowing toolkits often 

restrict which thread can access 
GUI components
• e.g., only the Android UI thread 

can access GUI components 

: My
Component

start()
run()

new()

Running Java Threads
: MyThread

See developer.android.com/training/multiple-threads/communicate-ui.html

onCreate()

https://developer.android.com/training/multiple-threads/communicate-ui.html


23

• A thread (traditional, platform, or
virtual) can generally run any code
• However, windowing toolkits often 

restrict which thread can access 
GUI components

• Likewise, virtual threads are suitable
for tasks that block most of the time, 
often waiting for I/O to complete

: My
Component

start()
run()

new()

Running Java Threads
: MyThread

onCreate()



24

• A thread (traditional, platform, or
virtual) can generally run any code
• However, windowing toolkits often 

restrict which thread can access 
GUI components

• Likewise, virtual threads are suitable
for tasks that block most of the time, 
often waiting for I/O to complete
• Virtual threads are not intended for 

long running CPU-intensive operations

: My
Component

start()
run()

new()

Running Java Threads
: MyThread

onCreate()



25

• A thread can live as long as its run() hook 
method hasn’t returned

Running Java Threads
: My

Component

start()

new()

run()

: MyThread

onCreate()



26

• A thread can live as long as its run() hook 
method hasn’t returned
• The underlying thread scheduler can 

suspend & resume a thread many 
times during its lifecycle

Running Java Threads
: My

Component

onCreate()

start()
run()

new()

: MyThread

See en.wikipedia.org/wiki/Scheduling_(computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)


27

• A thread can live as long as its run() hook 
method hasn’t returned
• The underlying thread scheduler can 

suspend & resume a thread many 
times during its lifecycle
• Scheduler operations are largely invisible 

to user code, as long as synchronization 
is performed properly..

Running Java Threads
: My

Component

start()
run()

new()

: MyThread

onCreate()



28

• For a thread to execute “forever,” its run() 
hook method needs an infinite loop 

Running Java Threads
: My

Component

start()
run()

new()

: MyThread

public void run(){
while (true) { ... }

}

onCreate()



29

Running Java Threads
• The thread is dead after run() returns : My

Component

start()
run()

new()

: MyThread

onCreate()



30

Running Java Threads
• The thread is dead after run() returns
• A thread can end normally

: My
Component

start()
run()

new()

: MyThread

onCreate()

public void run(){
while (true) { 
...
if (someCondition())
return;

}
}



31

Running Java Threads
• The thread is dead after run() returns
• A thread can end normally
• Or an uncaught exception can

be thrown

: My
Component

start()
run()

new()

: MyThread

onCreate()

public void run(){
while (true) { 
...
if (someError())
throw new
SomeException();

}
}

See www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml


32

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()
run()

new()

join()

: MyThread

onCreate()



33

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()
run()

new()

join()

: MyThread

See upcoming lessons on “Java Barrier Synchronizers”

Simple form of “barrier synchronization”

onCreate()



34

: My
Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
• Or a thread can simply evaporate!

onCreate()



35

: My
Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
• Or a thread can simply evaporate!
• The Java execution environment

recycles thread resources 

onCreate()



36

: My
Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
• Or a thread can simply evaporate!
• The Java execution environment

recycles thread resources 
• e.g., runtime stack of activation 

records, thread-local storage, etc.

onCreate()



37

End of How Java 
Threads Start & Run


