
Java Platform Threads
vs. Virtual Threads

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving

code to a thread
• Learn how to pass parameters

to a Java thread
• Know the differences between Java

platform & virtual threads

Learning Objectives in this Part of the Lesson

See download.java.net/java/early_access/loom
/docs/api/java.base/java/lang/Thread.html

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

3

Java Platform Threads
vs. Virtual Threads

4

• A Java Thread has traditionally been an object
containing various methods & fields that
constitute its “state”

Java Platform Threads vs. Virtual Threads

See blog.jamesdbloom.com/JVMInternals.html

e.g., each Java Thread has its own unique name,
identifier, priority, runtime stack, thread-local

storage, instruction pointer, & other registers, etc.

http://blog.jamesdbloom.com/JVMInternals.html

5

• A Java Thread has traditionally been an object
containing various methods & fields that
constitute its “state”
• Project Loom now refers to these types

of Java threads as “platform threads”

Java Platform Threads vs. Virtual Threads

See wiki.openjdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

6

• Each Java platform thread is associated 1-to-1
with an OS kernel thread

Java Platform Threads vs. Virtual Threads

See en.wikipedia.org/wiki/Thread_(computing)#Kernel_threads

https://en.wikipedia.org/wiki/Thread_(computing)

7

• Each Java platform thread is associated 1-to-1
with an OS kernel thread
• It contains the same unique “state” as a

traditional Java Thread object

Java Platform Threads vs. Virtual Threads

8

• Each Java platform thread is associated 1-to-1
with an OS kernel thread
• It contains the same unique “state” as a

traditional Java Thread object
• Platforms threads are suitable for executing

all types of tasks

Java Platform Threads vs. Virtual Threads

9

• Each Java platform thread is associated 1-to-1
with an OS kernel thread
• It contains the same unique “state” as a

traditional Java Thread object
• Platforms threads are suitable for executing

all types of tasks
• However, they are a limited resource due

to large runtime stack size

Java Platform Threads vs. Virtual Threads

10

• In contrast, each Java virtual thread
is a “lightweight” concurrency object

Java Platform Threads vs. Virtual Threads

Virtual
Thread

Platform
Thread

11

• In contrast, each Java virtual thread
is a “lightweight” concurrency object
• It is a user thread rather than a

kernel thread

Java Platform Threads vs. Virtual Threads

See en.wikipedia.org/wiki/Thread_(computing)#User_threads

Virtual
Threads

User threads

https://en.wikipedia.org/wiki/Thread_(computing)

12

• In contrast, each Java virtual thread
is a “lightweight” concurrency object
• It is a user thread rather than a

kernel thread
• It is scheduled by the Java

execution environment rather
than the underlying OS

Java Platform Threads vs. Virtual Threads
Virtual
Threads

13

• In contrast, each Java virtual thread
is a “lightweight” concurrency object
• It is a user thread rather than a

kernel thread
• It is scheduled by the Java

execution environment rather
than the underlying OS

• A very large # of virtual threads
can therefore be created

Java Platform Threads vs. Virtual Threads
Virtual
Threads

14

• In contrast, each Java virtual thread
is a “lightweight” concurrency object
• It is a user thread rather than a

kernel thread
• Virtual threads are multiplexed

atop a pool of platform threads

Java Platform Threads vs. Virtual Threads
Virtual
Threads

15

Creating Java Platform
Threads vs. Virtual Threads

16

• Java platform threads can be
created in two different ways

Creating Java Platform Threads vs. Virtual Threads

17

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

Create & start a thread using
GCDThread, which is a

named subclass of Thread

18

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

public class GCDRunnable
implements Runnable {

public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

new Thread(gcdRunnable).start();

Pass runnable to a new
Thread object & start it

See en.wikipedia.org/wiki/Thread_(computing)#User_threads

https://en.wikipedia.org/wiki/Thread_(computing)

19

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

public class GCDRunnable
implements Runnable {

public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

new Thread(gcdRunnable).start();

Java threads are relatively “heavyweight”

20

• Java platform threads can be
created in two different ways
• The traditional way
• The Project Loom way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread.ofPlatform()
.start(gcdRunnable);

See download.java.net/java/early_access/loom/docs
/api/java.base/java/lang/Thread.html#ofPlatform

Create & start a platform thread
so it executes gcdRunnable

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

21

• Java platform threads can be
created in two different ways
• The traditional way
• The Project Loom way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofPlatform()
.unstarted(gcdRunnable);

...
thread.start();

Create an “unstarted” platform thread &
then start it so it executes gcdRunnable

22

• Java platform threads can be
created in two different ways
• The traditional way
• The Project Loom way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofPlatform()
.unstarted(gcdRunnable);

...
thread.start();

Java platform threads are also relatively “heavyweight”

23

• Java virtual threads can also
be created in Project Loom

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread.ofVirtual()
.start(gcdRunnable);

See download.java.net/java/early_access/loom/
docs/api/java.base/java/lang/Thread.html#ofVirtual

Create & start a virtual thread
so it executes gcdRunnable

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

24

• Java virtual threads can also
be created in Project Loom

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofVirtual()
.unstarted(gcdRunnable);

...
thread.start();

Create an “unstarted” virtual thread &
then start it so it executes gcdRunnable

25

• Java virtual threads can also
be created in Project Loom

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofVirtual()
.unstarted(gcdRunnable);

...
thread.start();

Java virtual threads are relatively “lightweight”

26

End of Java Platform
Threads vs. Virtual Threads

