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Learning Objectives in this Part of the Lesson

» Learn how our case study app works
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See github.com/douglascraigschmidt/
POSA/tree/master/ex/M3/GCD/Concurrent
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Runtime Behavior of the
GCD Concurrent App




Runtime Behavior of the GCD Concurrent App

« Concurrently compute the greatest common divisor (GCD)

of pairs of randomly generated numbers

« GCD is largest integer that divides two integers without

a remainder
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<<Java Class>>

® Thread

& yield()-void

& currentThread():Thread
ossleep(long):void

& sleep(long.int):void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()-void

@ run()-void

@ exit()-void

@ interrupt():void
&interrupted():boolean
@ isInterrupted():boolean
& isAlive():boolean

& setPriority(int)-void

& getPriority():int

& join(long)-void

& join(long.int)-void

& join()-void

& setDaemon(boolean)-void
& isDaemon()-boolean

See en.wikipedia.org/wiki/Greatest common divisor
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Design of the GCD
Concurrent App




Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>

(® MainActivity
<<Java Class>> & MainActivity()
@ LifecycleLoggingActivity & onCreate(Bundle):void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void / @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void

<<Java Class>>
®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread

@ GCDRunnable.(Mz‘nnA.ctMty) @ setActivity(MainActivity):GCDThread

@ computeGCD(int,int)-int @ computeGCD(int,int):int

@ run()-void @ run()-void

See qgithub.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent
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Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity
<<Java Class>> & MainActivity()
@LifecycleLoggingActivity & onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void
<<Java Class>>
T : ®GCDThread
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread
@ GCDRunnable.(Me.nnA.ctIVIty) @ setActivity(MainActivity):GCDThread
@ comput.eGCD(lnt.mt):mt @ computeGCD(int.int)int
@ run()-void o run()-void

Super class that logs various activity lifecycle hook methods to aid debugging




Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>

(® MainActivity
<<Java Class>> & MainActivity()
@ LifecycleLoggingActivity & onCreate(Bundle):void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void A @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void

<<Java Class>>
®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread

@ GCDRunnable.(Me.nnA.ctIVIty) @ setActivity(MainActivity):GCDThread

@ computeGCD(int,int)-int @ computeGCD(int,int):int

@ run()-void @ run()-void

Main entry point into the app that handles button presses from the user




Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity Thread
<<Java Class>> ocMainActivity()
GLifecycleLoggingActivity B T ”tmr(,f
@ LifecycleLoggingActivity() @ runRunnable(View)-void start()
& onCreate(Bundle)-void / @ runThread(View):void B
< onStart():void @ runThreadAndRunnable(View):void
& onResume():void @ printIn(String):void Zk
< onPause():-void
& onStop()-void -mActivity’ 0.1 -mActivity ..1
< onRestart()-void GCDThread
< onDestroy():void

run()

<<Java Class>>

®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= _ = @ setRandom(Random):GCDThread
@ GCDRunnable(MainActivity) o setActivity(MainActivity):GCDThread

@ computeGCD(int,int):int
@ run()-void

@ computeGCD(int,int):int
@ run():void

Computes the GCD of two numbers by extending the Thread super class




Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity
Runnable @ MainActivity()
< onCreate(Bundle):void
run() @ runRunnable(View):void
@ runThread(View):void
4 @ runThreadAndRunnable(View)-void
; @ printIn(String)-void
GCDRunnable -mActivity’ 0.1 -mActivity 'Q..1
run()
Thread
<<Java Class>>
Thread(Runnable) ®GCDThread
<<Java Class>>
O start() ® GCDRunnable & GCDThread()
= _ = @ setRandom(Random):GCDThread
P o) o setActivity(MainActivity):GCDThread
. comput.eGCD(mt,mt).mt @ computeGCD(int,int):int
@ run()-void @ run()-void

Computes the GCD of two numbers by implementing the Runnable interface




Design of the GCD Concurrent App

/*%
* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Random and implements the
* Runnable interface's run() hook method.
*/
public class GCDRunnable
extends Random // Inherits random number generation capabilities.
implements Runnable {
/**
* A reference to the MainActivity.
.
private final MainActivity mActivity;

/**
* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
i/

private final int MAX ITERATIONS = 100000000;

/**
* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
®/

private final int MAX PRINT ITERATIONS = 10000000;

/**
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
i/
public void run() {
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString) ;
// Generate random numbers and compute their GCDs.

for (int. i =0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = nextInt();
int number2 = nextInt();

// Print results every 10 million iterations.
if ((i % MAX PRINT ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString

+ " the GCD of "

+ numberl

+ " and "

+ number2

+ " ig ™

+ computeGCD (numberl,
number?2)) ;

}

mActivity.println("Leaving run() " + threadString);

« We'll explore the implementations of these threading alternatives shortly

* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Thread and overrides its
* run() hook method.
*y
public class GCDThread
extends Thread {

/**

* A reference to the MainActivity.

&/
private MainActivity mActivity;

[ **
* Generate random numbers.
*/

private Random mRandom;

[ **
* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
A

private final int MAX ITERATIONS = 100000000;

/**
* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
o

private final int MAX PRINT ITERATIONS = 10000000 ;

[ **
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
o
public void run() {f]
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString);
// Generate random numbers and compute their GCDs.

for (int i = 0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = mRandom.nextInt() ;
int number2 = mRandom.nextInt();

// Print results every 10 million iterations.
if ((i % MAX PRINT ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString + " the GCD of "
+ numberl + " and " + number2 + " is "
+ computeGCD (numberl,
number?)) ;
}

mActivity.println("Leaving run() " + threadString) ;
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Design of the GCD Concurrent App

* First, however, we’ll show how to build & run the app

# Concurrent [D:\Douglas Schmidt\Dropbox\POSA\POSA\ex\M3\GCD\Concurrent] - ..\app\src\main\java\vandy\mooc\gcd\activities\GCDThread.java [app] - Android Studio
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See qgithub.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent
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End of Overview of the
Java Case Study App
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