Overview of the Java Thread
Gase Study App

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Learn how our case study app works

o

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

>

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

un() with thread id Thread[Tt 2,5,main]

th thread id T hread main)] the GCD of

2and9 is1
Thread[Thread-3,5,main]

ad[Thread-3,5,main] the GCD of

th thread id T
nd -104

5,main] the

read-2,5,main] the GC

s-1

h thread id ead-2,5main| the
and -16182

th thread id T 3,5,main] the GCD of

d i[Thread-2,5,main] the GCD of
97 is -1
{[Thread-3,5,main| the

See github.com/douglascraigschmidt/
POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Runtime Behavior of the
GCD Concurrent App

Runtime Behavior of the GCD Concurrent App

« Concurrently compute the greatest common divisor (GCD)

of pairs of randomly generated numbers

« GCD is largest integer that divides two integers without

a remainder

RUN RUN
RUNNABLE THREAD

RUN THREAD
RUNNABLE

RUN RUN
RUNNABLE THREAD

RUN THREAD
RUNNABLE

read-3,5,main) the GCD o
1
read-2,5main] the GCD o

<<Java Class>>

® Thread

& yield()-void

& currentThread():Thread
ossleep(long):void

& sleep(long.int):void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()-void

@ run()-void

@ exit()-void

@ interrupt():void
&interrupted():boolean
@ isInterrupted():boolean
& isAlive():boolean

& setPriority(int)-void

& getPriority():int

& join(long)-void

& join(long.int)-void

& join()-void

& setDaemon(boolean)-void
& isDaemon()-boolean

See en.wikipedia.org/wiki/Greatest common divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

Design of the GCD
Concurrent App

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>

(® MainActivity
<<Java Class>> & MainActivity()
@ LifecycleLoggingActivity & onCreate(Bundle):void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void / @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void

<<Java Class>>
®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread

@ GCDRunnable.(Mz‘nnA.ctMty) @ setActivity(MainActivity):GCDThread

@ computeGCD(int,int)-int @ computeGCD(int,int):int

@ run()-void @ run()-void

See qgithub.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity
<<Java Class>> & MainActivity()
@LifecycleLoggingActivity & onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void
<<Java Class>>
T : ®GCDThread
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread
@ GCDRunnable.(Me.nnA.ctIVIty) @ setActivity(MainActivity):GCDThread
@ comput.eGCD(lnt.mt):mt @ computeGCD(int.int)int
@ run()-void o run()-void

Super class that logs various activity lifecycle hook methods to aid debugging

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>

(® MainActivity
<<Java Class>> & MainActivity()
@ LifecycleLoggingActivity & onCreate(Bundle):void
@ LifecycleLoggingActivity() @ runRunnable(View):void
< onCreate(Bundle):void A @ runThread(View):void
< onStart():void @ runThreadAndRunnable(View):void
< onResume():void @ printin(String)-void
< onPause():void
& onStop():void -mActivity’ 0.1 -mActivity ..1
< onRestart():-void
< onDestroy():void

<<Java Class>>
®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= - = @ setRandom(Random):GCDThread

@ GCDRunnable.(Me.nnA.ctIVIty) @ setActivity(MainActivity):GCDThread

@ computeGCD(int,int)-int @ computeGCD(int,int):int

@ run()-void @ run()-void

Main entry point into the app that handles button presses from the user

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity Thread
<<Java Class>> ocMainActivity()
GLifecycleLoggingActivity B T ”tmr(,f
@ LifecycleLoggingActivity() @ runRunnable(View)-void start()
& onCreate(Bundle)-void / @ runThread(View):void B
< onStart():void @ runThreadAndRunnable(View):void
& onResume():void @ printIn(String):void Zk
< onPause():-void
& onStop()-void -mActivity’ 0.1 -mActivity ..1
< onRestart()-void GCDThread
< onDestroy():void

run()

<<Java Class>>

®GCDThread
<<Java Class>> S
(® GCDRunnable @ GCDThread()
= _ = @ setRandom(Random):GCDThread
@ GCDRunnable(MainActivity) o setActivity(MainActivity):GCDThread

@ computeGCD(int,int):int
@ run()-void

@ computeGCD(int,int):int
@ run():void

Computes the GCD of two numbers by extending the Thread super class

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class>>
(® MainActivity
Runnable @ MainActivity()
< onCreate(Bundle):void
run() @ runRunnable(View):void
@ runThread(View):void
4 @ runThreadAndRunnable(View)-void
; @ printIn(String)-void
GCDRunnable -mActivity’ 0.1 -mActivity 'Q..1
run()
Thread
<<Java Class>>
Thread(Runnable) ®GCDThread
<<Java Class>>
O start() ® GCDRunnable & GCDThread()
= _ = @ setRandom(Random):GCDThread
P o) o setActivity(MainActivity):GCDThread
. comput.eGCD(mt,mt).mt @ computeGCD(int,int):int
@ run()-void @ run()-void

Computes the GCD of two numbers by implementing the Runnable interface

Design of the GCD Concurrent App

/*%
* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Random and implements the
* Runnable interface's run() hook method.
*/
public class GCDRunnable
extends Random // Inherits random number generation capabilities.
implements Runnable {
/**
* A reference to the MainActivity.
.
private final MainActivity mActivity;

/**
* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
i/

private final int MAX ITERATIONS = 100000000;

/**
* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
®/

private final int MAX PRINT ITERATIONS = 10000000;

/**
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
i/
public void run() {
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString) ;
// Generate random numbers and compute their GCDs.

for (int. i =0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = nextInt();
int number2 = nextInt();

// Print results every 10 million iterations.
if ((i % MAX PRINT ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString

+ " the GCD of "

+ numberl

+ " and "

+ number2

+ " ig ™

+ computeGCD (numberl,
number?2)) ;

}

mActivity.println("Leaving run() " + threadString);

« We'll explore the implementations of these threading alternatives shortly

* Computes the greatest common divisor (GCD) of two numbers, which is
* the largest positive integer that divides two integers without a
* remainder. This implementation extends Thread and overrides its
* run() hook method.
*y
public class GCDThread
extends Thread {

/**

* A reference to the MainActivity.

&/
private MainActivity mActivity;

[**
* Generate random numbers.
*/

private Random mRandom;

[**
* Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
A

private final int MAX ITERATIONS = 100000000;

/**
* Number of times to iterate before calling print, which is 10
* million to ensure the program runs for a while.
o

private final int MAX PRINT ITERATIONS = 10000000 ;

[**
* Hook method that runs for MAX ITERATIONs computing the GCD of
* randomly generated numbers.
o
public void run() {f]
final String threadString = " with thread id " + Thread.currentThread() ;

mActivity.println("Entering run()" + threadString);
// Generate random numbers and compute their GCDs.

for (int i = 0; i < MAX ITERATIONS; ++i) {
// Generate two random numbers.
int numberl = mRandom.nextInt() ;
int number2 = mRandom.nextInt();

// Print results every 10 million iterations.
if ((i % MAX PRINT ITERATIONS) == 0)
mActivity.println("In run()"
+ threadString + " the GCD of "
+ numberl + " and " + number2 + " is "
+ computeGCD (numberl,
number?)) ;
}

mActivity.println("Leaving run() " + threadString) ;

11

Design of the GCD Concurrent App

* First, however, we’ll show how to build & run the app

Concurrent [D:\Douglas Schmidt\Dropbox\POSA\POSA\ex\M3\GCD\Concurrent] - ..\app\src\main\java\vandy\mooc\gcd\activities\GCDThread.java [app] - Android Studio

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help g 10:42
1 10:

EH S e A app v | [LNexus6PAPI28 v | D & @ % M A Gt v 0O 0 Q RUN RUN RUN THREAD
Concurrent app src main java vandy mooc gcd activities) ‘€ GCDThread BUNNABLESSSE THREAD RUNHASLE
g Android ¥ @ = £ — (€ MainActivityjava € GCDThread java € GCDRunnablejava EIenng tuny with thread ‘11\;:,_‘:[121; main] 1’;,‘;‘ C’]‘TD of -
2} a 8 5 . 92 9 1 [a}
= — package vandy.mooc.gcd.activities; ntering Thread|Thread-35main] g
» manifests m N ru vith pad id T d[Thread-3,5main] the
) java 2is1
R (hread[Thread-3,5,main] the GCD of
© vandy.mooc (androidTest) . . . / 24048167 10314 is -1
£ vandy.mooc (test) import java.util.Random; n Thread[Thread-2,5,main] the GCD of
3
‘_il vandy.mooc.gcd g : d 7) of
- activities RUN RUN RUN THREAD 9762 and -161822-
€ GCDRunnable Vaza RUNNABLE ~ THREAD RUNNABLE un() with thr Tt GCD of
5 ¢ GCDThread it h thread a of
g €) LifecycleLoggingActivity * Computes the greatest c 7 i
S -3,5 n) the GCD ¢
= € MainActivity * - = 2 ' 5 966 and 10
§ utils the ld fgeb t K)O‘Sl the 1n un() w hre wead[Thread-2,5main| the G
3) ; ; ; " 716077 is -1
é java (generated) * remainder. This implemn un() with thread id Thread[Thread-3,5,main] the GCD of
e res 674 : 52
res (generated) * run () hOOk me thOd.
@ Gradle Scripts */
public class GCDThread
. extends Thread {
£
8
s ys
2
& * A reference to the
=
i
4
5 private MainActivity
*
/x* 0
5 <.
g * Generate random num 8
S o
ot B
2 */ g
i | o
= . . - . - = 3
GCDThread computeGCD()
i= TODO Terminal = 6: Logcat 9: Version Control “\ Build Q) Event Log
IZ] NDK Resolution Outcome: Project settings: Gradle model version=5.4.1, NDK version is UNKNOWN (a minute ago) 66:25 CRLF ¢ UTF-8+% 4spaces* Git: master * T &

See qgithub.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

End of Overview of the
Java Case Study App

13

