
Evaluating Java Thread
Programming Models

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving code to a thread
• Learn how to pass parameters to

a Java thread
• Know the differences between

Java platform & virtual threads
• Be aware of how a Java thread

starts & runs
• Recognize common thread

methods
• Be aware of the different types

of Java threads
• Know the pros & cons of Java

thread programming models

Learning Objectives in this Part of the Lesson

3

Pros & Cons of Java Thread
Programming Models

4

Pros & Cons of Java Thread Programming Models
• Now that we’ve examined the source code for the GCD concurrent app we’ll

summarize the pros & cons of the various Java thread programming models

5

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread public class GCDThread

extends Thread {
...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int number1, number2) {
...

}

@Override
public void run()
{ ... }
...

}

6

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int number1, number2) {
...

}

@Override
public void run()
{ ... }
...

}

7

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class
• Just override the run() hook

method!

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}

private int computeGCD
(int number1, number2) {
...

}

@Override
public void run()
{ ... }
...

}

8

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class
• All state & methods are

consolidated in one place

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}
...

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start();

...

9

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class
• All state & methods are

consolidated in one place
• Enables central allocation &

management of the thread

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}
...

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start();

...

10

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class
• All state & methods are

consolidated in one place
• Enables central allocation &

management of the thread
• This design is useful when the

thread must be updated during
runtime configuration changes

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}
...

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start();

...

11

Pros & Cons of Java Thread Programming Models
• Pros with extending Thread
• It’s straightforward to extend

the Thread super class
• All state & methods are

consolidated in one place
• Enables central allocation &

management of the thread
• This design is useful when the

thread must be updated during
runtime configuration changes
• e.g., interrupting/restarting

a running thread & reading/
writing its state

public class GCDThread
extends Thread {

...
private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

}
...

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start();

...

See the upcoming lessons on “Managing the Java Thread Lifecycle”

12

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread public class GCDThread

extends Thread {
...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

}

13

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread
• A subclass must extend the

Thread superclass

public class GCDThread
extends Thread {

...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

}

14

Pros & Cons of Java Thread Programming Models
• Cons with extending Thread
• A subclass must extend the

Thread superclass
• This is restrictive since Java

only allows one superclass
per subclass!

public class GCDThread
extends Thread {

...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

}

See docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

15

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable public class GCDRunnable

implements Runnable,
implements Serializable,
extends Random {

...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

16

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable
• A subclass can implement multiple

interfaces

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

public class GCDRunnable
implements Runnable,
implements Serializable,
extends Random {

...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

17

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable
• A subclass can implement multiple

interfaces
• Which enables it to extend

a different superclass

public class GCDRunnable
implements Runnable,
implements Serializable,
extends Random {

...
private int computeGCD

(int number1, number2) {
...

}

public void run() {
...

}
...

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

18

Pros & Cons of Java Thread Programming Models
• Pros of implementing Runnable
• A subclass can implement multiple

interfaces
• Runnables are flexible since they

can be reused in other contexts

See upcoming lessons on “the Java Executor framework”

public class GCDRunnable
implements Runnable,
... {

...
}
...

GCDRunnable runnableCommand =
new GCDRunnable(...);

ExecutorService executor =
Executors.newFixedThreadPool

(POOL_SIZE);
...
executor.execute
(runnableCommand);

19

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable public class GCDRunnable

implements Runnable,
... {

...
}
...

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread(runnableCommand);

...
thr.start();

20

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable
• Yields more “moving parts”

public class GCDRunnable
implements Runnable,
... {

...
}
...

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread(runnableCommand);

...
thr.start();

21

Pros & Cons of Java Thread Programming Models
• Cons of implementing Runnable
• Yields more “moving parts”
• e.g., Runnable & Thread are

separate entities & must be
managed/accessed separately

This decoupling get complicated if a program needs to access the
state of a runnable, but only holds a reference to the thread object..

public class GCDRunnable
implements Runnable,
... {

...
}
...

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread(runnableCommand);

...
thr.start();

22

Pros & Cons of Java Thread Programming Models
• In practice, Java & Android software often implements Runnable rather than

extending Thread

Thread

Thread(Runnable)
start()
…

Runnable

run()

MyRunnable

run()
…

Thread

run()
start()
…

MyThread

run()
…

23

Pros & Cons of Java Thread Programming Models
• In practice, Java & Android software often implements Runnable rather than

extending Thread
• Lambda expressions have become a popular to provide computations to

threads on modern Java platforms

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

new Thread(() ->
System.out.println("hello world"))
.start();

Define a computation that will
run in a separate Java thread

Runtime
thread
stack

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

24

End of Evaluating Java
Thread Programming Models

