
Comparing & Contrasting All the Java Fork-
Join Framework Programming Models

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Evaluate different fork-join framework
programming models in practice

• Evaluate the applyAllIter() method
• Evaluate the applyAllSplit() method
• Evaluate the applyAllSplitIndex()

method
• Compare & contrast all the

programming models for the
Java Fork-Join framework

Learning Objectives in this Part of the Lesson

3

Evaluating the
Example Applications

4

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons

5

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand

<T> List<T> applyAllIter
(List<T> list,
Function<T, T> op,
ForkJoinPool fjPool) {

...
for (T t : list)
forks.add
(new RecursiveTask<T>() {
protected T compute()
{ return op.apply(t); }

}.fork());

for (ForkJoinTask<T> task : forks)
results.add(task.join());

...

6

[1] Starting ForkJoinTest
applyAllIter() steal count = 101
applyAllSplitIndex() steal count = 34
applyAllSplit() steal count = 30
applyAllSplitIndexEx() steal count = 41
[1] Printing 4 results from fastest to slowest
testApplyAllSplit() executed in 9581 msecs
testApplyAllSplitIndex() executed in 9645 msecs
testApplyAllIter() executed in 10448 msecs
testApplyAllSplitIndexEx() executed in 10587 msecs
[1] Finishing ForkJoinTest

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• but it incurs more work-

stealing

Tests were conducted on a 3.2 GHz 10-core MacBook Pro laptop with 64 MBs RAM

7

[1] Starting ForkJoinTest
applyAllIter() steal count = 101
applyAllSplitIndex() steal count = 34
applyAllSplit() steal count = 30
applyAllSplitIndexEx() steal count = 41
[1] Printing 4 results from fastest to slowest
testApplyAllSplit() executed in 9581 msecs
testApplyAllSplitIndex() executed in 9645 msecs
testApplyAllIter() executed in 10448 msecs
testApplyAllSplitIndexEx() executed in 10587 msecs
[1] Finishing ForkJoinTest

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• but it incurs more work-

stealing
• which lowers performance

8

[1] Starting ForkJoinTest
applyAllIter() steal count = 101
applyAllSplitIndex() steal count = 34
applyAllSplit() steal count = 30
applyAllSplitIndexEx() steal count = 41
[1] Printing 4 results from fastest to slowest
testApplyAllSplit() executed in 9581 msecs
testApplyAllSplitIndex() executed in 9645 msecs
testApplyAllIter() executed in 10448 msecs
testApplyAllSplitIndexEx() executed in 10587 msecs
[1] Finishing ForkJoinTest

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”

9

[1] Starting ForkJoinTest
applyAllIter() steal count = 101
applyAllSplitIndex() steal count = 34
applyAllSplit() steal count = 30
applyAllSplitIndexEx() steal count = 41
[1] Printing 4 results from fastest to slowest
testApplyAllSplit() executed in 9581 msecs
testApplyAllSplitIndex() executed in 9645 msecs
testApplyAllIter() executed in 10448 msecs
testApplyAllSplitIndexEx() executed in 10587 msecs
[1] Finishing ForkJoinTest

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”
• which improves performance

There are also other factors (e.g., less data copying) that improve performance

10

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”
• which improves performance
• but is more complicated to

program

class SplitterTask extends
RecursiveTask<List<T>> {

protected List<T> compute() {
...
int mid = mList.size() / 2;
ForkJoinTask<List<T>> lt =
new SplitterTask(mList.subList

(0, mid)).fork();
mList = mList
.subList(mid, mList.size());

List<T> rightResult = compute();
List<T> leftResult = lt.join();
leftResult.addAll(rightResult);
return leftResult;

} ...

11

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”
• which improves performance
• but is more complicated to

program
• & also does more “work” wrt

method calls, etc.

12

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”
• RecursiveAction is rather

idiosyncratic
• Due to semantics of Java’s

generics

<T> List<T> applyAllSplitIndex
(List<T> list,
Function<T, T> op,
ForkJoinPool fjPool) {

T[] results = (T[]) Array
.newInstance
(list.get(0).getClass(),
list.size());

...

13

Evaluating the Example Applications
• Each Java fork-join programming

model has pros & cons, e.g.
• Iterative fork()/join() is simple

to program/understand
• Recursive decomposition

incurs fewer “steals”
• RecursiveAction is rather

idiosyncratic
• Due to semantics of Java’s

generics
• Changing the API can help!

<T> void applyAllSplitIndexEx
(List<T> list,
Function<T, T> op,
ForkJoinPool fjPool,
T[] results) {

...

14

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

See earlier lessons on the “Java Parallel Streams Framework”

15

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

The params & return value are similar

However, the parallel streams framework uses the common fork-join pool

16

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

Convert the list to a parallel stream

17

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

Apply op function to each
element of the stream

18

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

Convert the transformed stream back
into a list & return it to the caller

19

Evaluating the Example Applications
• Ironically, the most concise

solution involves the use of
parallel streams

<T> List<T> applyParallelStream
(List<T> list,
Function<T, T> op) {

return list

.parallelStream()

.map(op)

.collect(toList());

}

}

applyAllIter() steal count = 101
applyAllSplitIndex() steal count = 34
applyAllSplit() steal count = 30
applyAllSplitIndexEx() steal count = 41
applyParallelStream() steal count = 21
[1] Printing 5 results from fastest to slowest
testApplyAllSplit() executed in 9581 msecs
testParallelStream() executed in 9624 msecs
testApplyAllSplitIndex() executed in 9645 msecs
testApplyAllIter() executed in 10448 msecs
testApplyAllSplitIndexEx() executed in 10587 msecs
[1] Finishing ForkJoinTest

The parallel stream version performs well & is also much easier to program!

20

End of Comparing &
Contrasting All the Java
Fork-Join Framework
Programming Models

