The History of Goncurrency

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Learn Java, COI’]CUIT/EI’]CY hIStOI‘y Java Execution Environment (e.g., JVM)

C++/C

C

JAVA
HISTORY

System Libraries

Operating System Kernel

Learning Objectives in this Part of the Lesson

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Learn Java concurrency hIStOI‘y Java Execution Environment (e.g., JVM)

/\
Z
O
=
Z

C C++/C—

System Libraries

Operating System Kernel

You may already know some of this!!!

A Brief History of
Concurrency in Java

A Brief History of Concurrency in Java
» Foundational concurrency support

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java/INI

e.g., Java threads &
built-in monitor objects
were available in Java 1

Java Execution Environment (e.g., JVM)

System Libraries

C++/C

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#JIDK 1.0

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Foundational concurrency support

 Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

A Brief History of Concurrency in Java

 Foundational concurrency support SimpleBlockingBoundedQueue

 Focus on basic multi-threading

<Integer> simpleQueue = new
SimpleBlockingBoundedQueue<> () ;

& synchronization primitives
Thread[] threads = new Thread|[] {
new Thread (new Producer<>

Allow multiple threads to
communicate & interact
via @ "bounded buffer”

(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

for (Thread thread : threads)
thread. join() ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>

(simpleQueue)),
//////////;ew Thread (new Consumer<>
Create two Thread (simpleQueue))

objects that produce & Y
consume messages via |
the bounded buffer for (Thread thread : threads)

thread.start () ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

Start the producer &
consumer threads

\\\\\\\\For (Thread thread : threads)
thread.start() ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

Wait for the producer

¢&§U¢ﬂ#2€fﬁ%¢5d§ \\\\\\\\\\\for (Thread thread : threads)
O 71nIsh running thread. join () ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#join

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

. i - : SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())

wait();
Demonstrates Javas _
fyAll () ;
built-in monitor object / notifyall ()

mutual exclusion &
coordination primitives }

}

return mList.poll () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java

 Foundational concurrency support class

. : - . SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())
Ensure mutually / wait()

exclusive access to _
take()’s critical section notifyall();

return mList.poll () ;

}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

: : . SimpleBlockingBoundedQueue<E> {
» Focus on basic multi-threading public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;

Coordinate interactions /)ti fyAll();

between multiple producer

& consumer threads return mList.poll();
}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very
limited in capabilities

14

A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very

limited in capa

« Many accidental complexities

bilities

CAUTION
FLOOR | W
SLIPPERY | | &
WHEN WET

:

s

Accidental complexities arise
from limitations with software
technigues, tools, & methods

See en.wikipedia.org/wiki/No Silver Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet

A Brief History of Concurrency in Java
» Advanced concurrency support

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

eq, Java executor fram E’WOI‘/(, Java Execution Environment (e.g., JVM)

synchronizers, blocking queues,
System Libraries

ava/INI

J

C++/C

all became available in Java 5+

atomics, & concurrent collections
Operating System Kernel

C

See en.wikipedia.org/wiki/Java version history#J2SE 5.0

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Advanced concurrency support

» Focus on course-grained “task
parallelism”

ExecutorCompletionService

runnable

submit()

1.submit (task)

/ 6.take ()

%%%%

take()

Completion
Queue

Future

Future

execute() run ()
N\
2.o0ffer() QZ’—§\>
3 .
K TP
runnable = 78 9%
WorkQueue S~ WorkerThreads
\
3.take()
5.add() 4.run()
/ runnable
ThreadPoolExecutor

See en.wikipedia.org/wiki/Task parallelism

https://en.wikipedia.org/wiki/Task_parallelism

A Brief History of Concurrency in Java

» Advanced concurrency support

» Focus on course-grained “task
parallelism”

 e.g., multiple tasks can be
running concurrently

ExecutorCompletionService

runnable

submit()

1.submit (task)

take()

—
9% eg eg eg g 64

Completion
Queue

execute() run ()

Future

Future

Future

N\

2.o0ffer () m

S 959 éegeg

runnable

WorkQueue S~ WorkerThreads

TN
3.take()
5.add() 4.run()
/ runnable
ThreadPoolExecutor

The assumption then was there weren’t many processor cores, e.g., 2 to 4

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on course-grained “task Executors .1{1ewF1xedThreadPool
" (numOfBeings,
parallelism mThreadFactory) ;

 e.g., multiple tasks can be

runnnm;concunenﬂy CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownlLatch exitBarrier =

Create a fixed-sized thread pool new CountDownLatch (numOfBeings) ;
& also coordinate the starting &
stopping of multiple tasks that for (int i=0; i < beingCount; ++i)
acquire/release shared resources executor.execute _
(makeBeingRunnable (i,
entryBarrier,

exitBarrier));

See github.com/douglascraigschmidt/Livel essons/tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
H \ E . 1
. Focus on course-grained “task xecutors r.1ewF1xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

 e.g., multiple tasks can be

runnnm;concunenﬂy CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownLatch exitBarrier =
new CountDownLatch (numOfBeings) ;

Creates a thread pool that reuses
a fixed # of threads operating off for (int i=0; i < beingCount; ++i)
of a shared unbounded queue executor . execute
(makeBeingRunnable (i,

entryBarrier,
exitBarrier));

See docs.orade.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixed ThreadPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
H \ E . i
- Focus on course-grained “task xecutors gewleedThreadPool
" (numOfBeings,
parallelism mThreadFactory) ;

 e.g., multiple tasks can be

runnnm;concunenﬂy CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownLatch exitBarrier =
new CountDownLatch (numOfBeings) ;

A synchronizer that allows a set of

threads to all wait for each other for (int i=0; i < beingCount; ++i)
to reach a common bartrier point executor .execute
(makeBeingRunnable (i,
entryBarrier,

exitBarrier));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
H \ E . i
- Focus on course-grained “task xecutors gewleedThreadPool
" (numOfBeings,
parallelism mThreadFactory) ;

 e.g., multiple tasks can be

runnnm;concunenﬂy CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownLatch exitBarrier =
new CountDownLatch (numOfBeings) ;

A synchronizer that allows one or
more threads to wait until a set for (int i=0; i < beingCount; ++i)
of operations being performed executor.execute
in other threads completes (makeBeingRunnable (1, _
entryBarrier,

exitBarrier));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on course-grained “task Executors .r.lewFJ.xedThreadPool
" (numOfBeings,
parallelism mThreadFactory) ;

 e.g., multiple tasks can be

runnnm;concunenﬂy CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

CountDownlLatch exitBarrier =

Executes the given command new CountDownLatch (numOfBeings) ;
at some time in the future in _ _ _ _ _
the fixed-size pool of threads | for (int 1=0; 1 < beingCount; ++1)

executor.execute
(makeBeingRunnable (i,
entryBarrier,
exitBarrier));

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

A Brief History of Concurrency in Java

« Advanced concurrency support

« Feature-rich & optimized, but also
tedious & error-prone to program

See flylib.com/books/en/2.558.1/risks of threads.html

https://flylib.com/books/en/2.558.1/risks_of_threads.html

A Brief History of Concurrency in Java

« Advanced concurrency support 60 -

50 -
» Feature-rich & optimized, but also
tedious & error-prone to program

« & scales poorly for modern
multi-core processors

40 -

30 -

20 -

10 - 4
4

0

¢ Actual

- Predicted

2004 2006 2009 2012

2014

2017

See www.infog.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

A Brief History of Concurrency in Java
» Advanced concurrency support ForkJoinPool

Parallel Streams

HEOENEE---O

- Feature-rich & optimized, but also LI el e

) E filter(not(this:-uriCached)) i
tedious & error-prone to program i JL §n o
Task 1 i his::downloadl i
- & scales poorly for modern &A= ™ ey
multi-core processors (getstartrage) {| map(this:applyFiters) |
| Y Taskﬂ/ X] «26 Task 3 E @ } f i
meNamlt = Jomce §h /imgNum2\ _ /page' 8 E reduce(Stream::t,‘ch)ncat) - i
/ .Ehenigplygzyic .thenCoTposeAsyn; : ‘E:L7 :: :I i
/ o) R et =
Motivates the need for Java’s 1 AX; Task 4 r/ i26
parallel programming frameworks e 5y maan2\ C°|';L l:{frt:sb'e

Integer: :sum)

See upcoming lesson on " How Parallel Programs Are Developed in Java’

End of the History of
Concurrency Support in Java

27

