
The History of Concurrency
Support in Java

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

• Understand the meaning of key
concurrent programming concepts

• Recognize how Java supports
concurrent programming concepts

• Be aware of common concurrency
hazards faced by Java programmers

• Learn Java concurrency history

JAVA
HISTORY

3

Learning Objectives in this Part of the Lesson

You may already know some of this!!!

• Understand the meaning of key
concurrent programming concepts

• Recognize how Java supports
concurrent programming concepts

• Be aware of common concurrency
hazards faced by Java programmers

• Learn Java concurrency history

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

4

A Brief History of
Concurrency in Java

5

A Brief History of Concurrency in Java
• Foundational concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#JDK_1.0

e.g., Java threads &
built-in monitor objects
were available in Java 1

https://en.wikipedia.org/wiki/Java_version_history

6

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

7

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

Allow multiple threads to
communicate & interact
via a “bounded buffer”

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

8

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

Create two Thread
objects that produce &
consume messages via

the bounded buffer

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

9

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start

Start the producer &
consumer threads

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

10

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#join

Wait for the producer
& consumer threads

to finish running

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

11

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

class
SimpleBlockingBoundedQueue<E> {
public E take() ...{
synchronized(this) {
while (mList.isEmpty())
wait();

notifyAll();

return mList.poll();
}

}

Demonstrates Java’s
built-in monitor object

mutual exclusion &
coordination primitives

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

12

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

class
SimpleBlockingBoundedQueue<E> {
public E take() ...{
synchronized(this) {
while (mList.isEmpty())
wait();

notifyAll();

return mList.poll();
}

}

Ensure mutually
exclusive access to

take()’s critical section

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

13

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

class
SimpleBlockingBoundedQueue<E> {
public E take() ...{
synchronized(this) {
while (mList.isEmpty())
wait();

notifyAll();

return mList.poll();
}

}

Coordinate interactions
between multiple producer

& consumer threads

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

14

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives
• Efficient, but low-level & very

limited in capabilities

15

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives
• Efficient, but low-level & very

limited in capabilities
• Many accidental complexities

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

16

A Brief History of Concurrency in Java
• Advanced concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#J2SE_5.0

e.g., Java executor framework,
synchronizers, blocking queues,
atomics, & concurrent collections
all became available in Java 5+

https://en.wikipedia.org/wiki/Java_version_history

17

ThreadPoolExecutor

3.take()
4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on course-grained “task

parallelism”

See en.wikipedia.org/wiki/Task_parallelism

WorkerThreads

execute() run()
runnable

runnableFuture

Future

Future

Future

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

https://en.wikipedia.org/wiki/Task_parallelism

18

ThreadPoolExecutor

3.take()
4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

WorkerThreads

execute() run()
runnable

runnableFuture

Future

Future

Future

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

The assumption then was there weren’t many processor cores, e.g., 2 to 4

19

A Brief History of Concurrency in Java

See github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =
new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,

entryBarrier,
exitBarrier));

Create a fixed-sized thread pool
& also coordinate the starting &
stopping of multiple tasks that

acquire/release shared resources

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

20

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool

Creates a thread pool that reuses
a fixed # of threads operating off

of a shared unbounded queue

• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =
new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,

entryBarrier,
exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

21

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

A synchronizer that allows a set of
threads to all wait for each other
to reach a common barrier point

• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =
new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,

entryBarrier,
exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

22

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

A synchronizer that allows one or
more threads to wait until a set
of operations being performed

in other threads completes

• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =
new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,

entryBarrier,
exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

23

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

Executes the given command
at some time in the future in
the fixed-size pool of threads

• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• e.g., multiple tasks can be

running concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =
new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,

entryBarrier,
exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

24

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program

See flylib.com/books/en/2.558.1/risks_of_threads.html

https://flylib.com/books/en/2.558.1/risks_of_threads.html

25

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program
• & scales poorly for modern

multi-core processors

See www.infoq.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

26

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on course-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program
• & scales poorly for modern

multi-core processors

See upcoming lesson on “How Parallel Programs Are Developed in Java”

Parallel Streams

Completable
Futures

Motivates the need for Java’s
parallel programming frameworks

27

End of the History of
Concurrency Support in Java

