
Example Application

of Java StampedLock

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the structure, functionality of the Java StampedLock class

• Know the key methods in Java StampedLock

• Recognize how to apply Java StampedLock in practice

class Point { ... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

} ...



3

Learning Objectives in this Part of the Lesson
• Understand the structure, functionality of the Java StampedLock class

• Know the key methods in Java StampedLock

• Recognize how to apply Java StampedLock in practice

class Point { ... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

} ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

The discussion is based on 
examples from the Java 

StampedLock documentation!

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html


4

Applying Java Stamped
Lock in Practice



5

• The Point class shows how to program with StampedLock

Applying Java StampedLock in Practice

class Point {

private double x;

private double y; 

private final StampedLock sl = 

new StampedLock(); 

... 

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/StampedLock.html


6

• The Point class shows how to program with StampedLock

class Point {

private double x;

private double y; 

private final StampedLock sl = 

new StampedLock(); 

... 

Maintains two-dimensional points

Applying Java StampedLock in Practice



7

• The Point class shows how to program with StampedLock

class Point {

private double x;

private double y; 

private final StampedLock sl = 

new StampedLock(); 

... 

State that must be protected

Applying Java StampedLock in Practice



8

• The Point class shows how to program with StampedLock

class Point {

private double x;

private double y; 

private final StampedLock sl = 

new StampedLock(); 

... 

StampedLock that does
the protecting

Applying Java StampedLock in Practice



9

Applying Java StampedLock: 
Writing Mode 



10

• Performing an exclusive write with a StampedLock

class Point {

... 

void move(double deltaX,

double deltaY) { 

long stamp = sl.writeLock();

try {

x += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

}

}

...

This method atomically moves 
a point to a new location

Applying Java StampedLock: Writing Mode

Half-
Empty



11

• Performing an exclusive write with a StampedLock

class Point {

... 

void move(double deltaX, 

double deltaY) { 

long stamp = sl.writeLock();

try {

x += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

}

}

...

Acquire a write lock

Applying Java StampedLock: Writing Mode



12

• Performing an exclusive write with a StampedLock

class Point {

... 

void move(double deltaX, 

double deltaY) { 

long stamp = sl.writeLock();

try {

x += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

}

}

...

Modify the state atomically

Applying Java StampedLock: Writing Mode



13

• Performing an exclusive write with a StampedLock

class Point {

... 

void move(double deltaX, 

double deltaY) { 

long stamp = sl.writeLock();

try {

x += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

}

}

...

Release the write lock

Applying Java StampedLock: Writing Mode



14

Applying Java StampedLock: 
Optimisitic & Reading Mode 



15

Half-
Full

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

A read-only method

Applying Java StampedLock: Optimisitic & Reading Mode



16

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

Attempt to get an 
“observation” stamp

Applying Java StampedLock: Optimisitic & Reading Mode



17

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

“Optimistically” read 
state into local variables

Code using optimistic reading mode typically copies the values of 
fields & holds them in local variables for use after they are validated

Applying Java StampedLock: Optimisitic & Reading Mode



18

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

Check if another thread acquired 
the lock for writing after earlier 
call to tryOptimisticRead()

Applying Java StampedLock: Optimisitic & Reading Mode



19

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

If write lock occurred then 
acquire a read lock (blocking 
as long as the write lock is 
held by another thread)

Applying Java StampedLock: Optimisitic & Reading Mode



20

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

Make copies of x & y 
via “pessimistic” reads

Applying Java StampedLock: Optimisitic & Reading Mode



21

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

Release read lock

Applying Java StampedLock: Optimisitic & Reading Mode



22

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

No lock to release if validate() succeeded

Applying Java StampedLock: Optimisitic & Reading Mode



23

• Performing a optimistic read with a StampedLock

class Point {

... 

double distanceFromOrigin() {

long stamp = sl.tryOptimisticRead();

double currX = x, currY = y;

if (!sl.validate(stamp)) {

stamp = sl.readLock();

try {

currX = x; currY = y;

} finally 

{ sl.unlockRead(stamp); }

}

return Math.sqrt (currX * currX + currY * currY);

}

...

Do computation with 
the copied values

Applying Java StampedLock: Optimisitic & Reading Mode



24

Applying Java Stamped
Lock: Conditional Write



25

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try {

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Move a point only if it’s current at the origin

Applying Java StampedLock: Conditional Write



26

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Acquire a read lock

Applying Java StampedLock: Conditional Write



27

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Check whether x & 
y are at the origin

Applying Java StampedLock: Conditional Write

This loop only executes at most twice!



28

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Try to upgrade 
to a write lock 
w/out blocking

tryConvertToWriteLock() atomically releases the read lock 
& acquires the write lock if there are no other readers

Applying Java StampedLock: Conditional Write



29

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Upgrade succeeded w/out blocking!

Applying Java StampedLock: Conditional Write



30

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Update stamp & 
modify Point’s state

Applying Java StampedLock: Conditional Write



31

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Exit the loop

Applying Java StampedLock: Conditional Write



32

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Upgrade failed, so release the 
read lock & block until the write 
lock acquired exclusively

The x & y field values may change between unlockRead() & writeLock()!

Applying Java StampedLock: Conditional Write



33

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

Must retest loop condition since x & 
y field values may change between 
unlockRead() & writeLock()!

Applying Java StampedLock: Conditional Write



34

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try 

while (x == 0.0 && y == 0.0) {

long ws = sl.tryConvertToWriteLock(stamp);

if (ws != 0L) {

stamp = ws;

x = newX; y = newY;

break;

} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

}

...

This conversion will always 
succeed since stamp is now 
a write lock

Applying Java StampedLock: Conditional Write



35

• Performing a conditional write with a StampedLock

class Point {

... 

void moveIfAtOrigin(double newX, double newY) {

long stamp = sl.readLock();

try {

while (x == 0.0 && y == 0.0) {

...

stamp = ws;

...

stamp = sl.writeLock();

}

}

} finally { sl.unlock(stamp); }

} 

...
Release the 
appropriate lock

Applying Java StampedLock: Conditional Write



36

End of Example Application 
of Java StampedLock


