Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize how to visualize the

Specific Notification
for
Java Thread Synchronization

Tom Cargill
Consultant
Box 69, Louisville, CO 80027
www.sni.net/~cargill

Abstract

Java supports thread synchronization by means of monitor-

implementation of a “fair” semaphore ot i e ot o e o B

threads acquire resources, which encounrages the use of the

using the Specific Notification pattern o st e s 0 s cocpeting o

0. Introduction

To study Java's threads, I first tackled
some of the classic exercises, like the
“Dining Philosophers™ and the “Readers
and Writers™ The sclutions that I
obtained were reascmable but I felt
uncomfortable with the degree to which
I had to depend on serendipitous
treatment with respect to contention for
locks and notifications. The selutions
were free of deadlock, but were not fair
in all circumstances. I thought I might
have to resign myyself to tolerating some
unfairness in Java. Next. I built a multi-
threaded NNTP! client, in which several

1B Kantor, P. Lapsley, Network News Transfir
Protocol, Internic RFC 977, 1986,

resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable. the Specific
Notification pattern may be used to designate exactly which
thread should proceed. Specific Notification provides an
explicit mechanism for thread selection and scheduling.

threads could have active requests
outstanding with an NNTP server. The
fundamental correctness of this class
depended on waiting threads being
reactivated in evacily the right order to
receive their responses from the server.
In coding this class I applied the Specific
Motification — mechanism described
below. With new msight, I returned to
the earlier exercises and found that
Specific Notification provided complete
solutions to those problems. I therefore
propose the Specific Notification pattern.

Section 1 summarizes the semantics of
Java's thread synchronization
mechanisms, contrasting them with
classical monitors; this section may be
omitted by readers who have a detailed

See www.dre.vanderbilt.edu/~schmidt/PDF/

specific-notification.pdf (especially Listing 3)

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

Visual Analysis of
Fair Semaphore Acquire
(T; & T))

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Enter monitor
object

Critical
Section

FairSemaphore s =
new FairSemaphore (1) ;

mWaitQ

mPermits

1

Create a fair semaphore
with a single permit

The wait queue is initially empty

Visual Analysis of Fair Semaphore Acquire (T; & T,)

FairSemaphore

Enter monitor
object

Critical

Section Thread T, acquires the

semaphore immediately
since there are no waiters

FairSemaphore s =
new FairSemaphore (1) ;

mWaitQ

// Thread T1
s.acquire () ;

mPermits

1

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

Acquire

*g Lock
T,

Synchronize access via
intrinsic (monitor) lock to
protect the object’s state

from race conditions

mPermits

1

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

waitLock

Critical
Section

mWaitQ

If gueue is empty & permit
count is greater than 0
decrement count & return

mPermits

0

This is the “fast path”

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

Release intrinsic (monitor)
lock & leave the monitor
object’s critical section

mWaitQ

mPermits

0

= _,z ‘
T, 8

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Enter monitor
object

Critical

Section Thread T, blocks in

acquire() since thread T,
acquired the only permit

FairSemaphore s =
new FairSemaphore (1) ;

mWaitQ

// Thread T2
s.acquire() ;

mPermits

0

Visual Analysis of Fair Semaphore Acquire (T, & T,)

‘_ FairSemaphore

> A
T waitObj,

2) Critical
Section

\

Critical
Section

Create a new waitObj, that

can be synchronized, stored

In the wait queue, & waited
upon by thread T,

mWaitQ

mPermits

0

This waiting happens outside of the FairSemaphore’s critical section

Visual Analysis of Fair Semaphore Acquire (T, & T,)

\\\J’
_’Z A\ o
Acquire
T2‘ e Lock waitObj,

Critical
Section
Must synchronize on waitObyj,

mWaitQ to ensure that it’s not deleted
prematurely in release()

FairSemaphore

mPermits

0

11

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Must also synchronize on
the intrinsic (monitor) lock
to update wait queue safely

Critical Wal tObJ A
}) d
Section Lock
—>
T,
mWaitQ
mPermits

12

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

*g
T,

mWaitQ Add waitObj, to the end of the

wait gueue, i.e., in FIFO order
A mPermits
waitObj,

Critical
Section O

13

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mWaitQ

A mPermits
waitObj,

: : Release intrinsic (monitor)
‘ lock & leave the monitor
14 object’s critical section

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

wait() must be made with
waitObj, synchronized, but wyout
holding the intrinsic (monitor)
lock to avoid "self-deadlock”

A »Z ! mPermits
T waitObj,

Grtical 2
Section O

15

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mWaitQ : :
wait() atomically releases the
&1 waitObj, monitor lock & blocks
elease) ‘ -
ek &7 3
mPermits
e waitObj,
Section O

16

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

R R Z
Block on
monitor condition T, .
A mPermits
waitObj,

Critical
Section O

Here’s what happens when a Java InterruptedException (IE) is thrown
in the acquire() method during a blocking call to wait() on a waitODbj

Visual Analysis of Fair Semaphore Acquire (T; & T,)

FairSemaphore

Critical

. ‘ Acquire
Section Lock
_,g
T, .
mWaitQ 7?/7re_aa’ must reacquire tﬁe
Intrinsic (monitor) lock in
the catch clause to access
— the wait queue safely
A mPermits
e waitObj,
Section O

18

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

mWaito \ Try removing waitObj, from wait
queue (If its not on the gqueue

another thread has released it, so
give back permit via release())

mPermits

0

19

Visual Analysis of Fair Semaphore Acquire (T, & T,)

FairSemaphore

Critical
Section

-7 3

T,

mWaitQ

Rethrow the
InterruptedException

mPermits

0

20

Visual Analysis of
Fair Semaphore Acquire

(T53)

21

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Enter monitor
object

Critical
Section

Thread T; blocks in
acquire() since there’s
already a waiter

FairSemaphore s =
new FairSemaphore (1) ;

mWaitQ

! // Thread T3

=
Release / 3 Block an_)z -
lock "~ monitor condition T, . S. acqul re () ;
mPermits
waitObi,

Critical
Section O

22

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

T; waitObj,

Critical
Section

mWaitQ Create another waitObj, that
can be synchronized, queued,
R & waited upon by thread T,
elease -
ek !ﬁ 3
mPermits
o waitObj,
Section O

23

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore
\ ‘
- “
Z A Aq\x
T3 ' Crif."c_'at’ LOCk Wai tObj B

A
Critical
Section
mWaitQ Synchronize on waitObj;
to ensure it’s not deleted
R prematurely in release()
Release ij Block 0:’?
lock "~ monitor condition T,
A mPermits
e waitObj,
Section O

24

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

waitObj,

Critical
Section

mWaitQ Must synchronize on the
intrinsic (monitor) lock to
$ update wait queue safely
e A
mPermits
waitObj, 0

25

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

waitObij,

waitObj,

mPermits

0

Add new waitObj, to end of
wait gueue, i.e., in FIFO order

26

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

waitObj,

e

mPermits

0

Release intrinsic (monitor)
lock & leave the monitor
object’s critical section

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

waitObij,

waitObj,

mPermits

0

wait() on waitObj, must be
made wy waitObjg, synchronized,
but wyout holding monitor lock
to avoid "self-deadlock”

28

Visual Analysis of Fair Semaphore Acquire (T5)

FairSemaphore

Critical
Section

mWaitQ
3 S walit() atomically releases
A s A ezl the waitObjz monitor lock
= = & blocks until it is notified
waitObj, waitObj, mPermits
0

29

Visual Analysis of
Fair Semaphore Release

(T4)

30

Visual Analysis of Fair Semaphore Release (T,)

\ Enter monitor FairSemaphore
object
-{
T,

Critical
Section

Thread T, releases longest
waiting thread, i.e., thread

T, waiting on waitObj, FairSemaphore s =
new FairSemaphore (1) ;

A = A S // Thread T4

s.release() ;

mPermits

0

waitObj, waitObj,

Thread T, could be thread T, or a different thread altogether

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

KJT Acquire
—)? Jock
T,

mWaitQ Must synchronize on the intrinsic
5 5 (monitor) lock to update permit
A i A e count & wait queue safely
waitObij, waitObj, mPermits
0

32

Visual Analysis of Fair Semaphore Release (T,)

—

FairSemaphore

Critical
Section

*g
T,

waitObj,

—
Block an

Critical
Section

next (waitObj,)

manitor condition T, 5
<

mPermits

0

If next waiter (waitObyj,) is in the
wait gueue then another thread
Is waiting to acquire semaphore,
S0 don’t increment permit count

33

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

Must acquire the monitor
lock on the next waitObj,

waitObi, mPermits

(waitObj,) 0

34

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical

Section

mWaitQ | -;Z i Unblock T, on g Inform thread T, blocked on

ftor conditi g o o c
5 O SR next waitObj, in acquire()

=g | | that a permit is available
A Az "
T,

itical

ortical mPermits

waitObj,

next
(waitObj,) O

35

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

mWaito _}Z o Unlock the next monitor
1,) onlock object so thread T, waiting
% in acquire() can continue
ot st T, e
A A2 /
waitOb3, it Release 4 mPermits
next J
(waitOb3j,) 0

36

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

- Waiting |
on lock

mPermits

next
(waitObj,) O

Release intrinsic (monitor)

lock & leave the monitor
object’s critical section

Visual Analysis of Fair Semaphore Release (T,)

FairSemaphore

Critical
Section

If no other threads are waiting
then thread T, increments the
permit count by 1 so another

thread can acquire the semaphore

mPermits

1

38

End of Visualizing a Fair
Semaphore Via the Specific
Notification Pattern

39

