
Visualizing a “Fair” Semaphore Via 

the Specific Notification Pattern

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the Specific Notification

pattern

• Be aware of the semantics of “fair”
semaphores

• Recognize how to visualize the
implementation of a “fair” semaphore 
using the Specific Notification pattern

See www.dre.vanderbilt.edu/~schmidt/PDF/
specific-notification.pdf (especially Listing 3) 

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf


Visual Analysis of
Fair Semaphore Acquire

(T1 & T2)



4

FairSemaphore

Critical 
Section

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

1

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Create a fair semaphore 
with a single permit

mWaitQ

The wait queue is initially empty



5

FairSemaphore

Critical 
Section

T1

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T1

s.acquire();

1

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Thread T1 acquires the 
semaphore immediately 

since there are no waiters

mWaitQ



6

Critical 
Section

1

mPermits

FairSemaphore

T1

Acquire 
Lock

Synchronize access via 
intrinsic (monitor) lock to 
protect the object’s state 

from race conditions

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



7

Critical 
Section

T1

FairSemaphore

0

mPermits

waitLock

If queue is empty & permit 
count is greater than 0 

decrement count & return

This is the “fast path”

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



8

Critical 
Section

T1

FairSemaphore

mWaitQ

0

mPermits

Release intrinsic (monitor) 
lock & leave the monitor 
object’s critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



9

FairSemaphore

Critical 
Section

T2

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T2

s.acquire();

0

mPermits

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Thread T2 blocks in 
acquire() since thread T1

acquired the only permit

mWaitQ



10

T2

Critical 
Section

0

mPermits

FairSemaphore

waitObjA

Create a new waitObjA that 
can be synchronized, stored 
in the wait queue, & waited 

upon by thread T2

This waiting happens outside of the FairSemaphore’s critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



11

Critical 
Section

T2

FairSemaphore

0

mPermits

waitObjA

Acquire 
Lock

Must synchronize on waitObjA
to ensure that it’s not deleted 

prematurely in release()

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



12

Critical 
Section

T2

FairSemaphore

0

mPermits

Acquire 
Lock

Must also synchronize on 
the intrinsic (monitor) lock 
to update wait queue safely

waitObjA

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

mWaitQ



13

Critical 
Section

FairSemaphore

mWaitQ

0

mPermits

Add waitObjA to the end of the 
wait queue, i.e., in FIFO order

waitObjA

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

T2



14

Critical 
Section

FairSemaphore

0

mPermits

T2

mWaitQ

Release intrinsic (monitor) 
lock & leave the monitor 
object’s critical section

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



15

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

wait() must be made with 
waitObjA synchronized, but w/out 

holding the intrinsic (monitor) 
lock to avoid “self-deadlock”

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



16

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

wait() atomically releases the 
waitObjA monitor lock & blocks

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



17

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Here’s what happens when a Java InterruptedException (IE) is thrown 
in the acquire() method during a blocking call to wait() on a waitObj

T2

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

waitObjA



18

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T2

Acquire 
Lock

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Thread must reacquire the 
intrinsic (monitor) lock in 
the catch clause to access 

the wait queue safely

waitObjA



19

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Try removing waitObjA from wait 
queue (if it’s not on the queue 

another thread has released it, so 
give back permit via release())

T2



20

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T1 & T2)

Rethrow the 
InterruptedException

T2



21

Visual Analysis of
Fair Semaphore Acquire

(T3)



22

FairSemaphore

Critical 
Section

T3

Enter monitor 
object

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T3

s.acquire();

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjB

Thread T3 blocks in 
acquire() since there’s 

already a waiter



23

T3

Critical 
Section

0

mPermits

FairSemaphore

waitObjB

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Create another waitObjB that 
can be synchronized, queued, 
& waited upon by thread T3

waitObjA



24

Critical 
Section

T3

FairSemaphore

0

mPermits

Acquire 
Lock

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Synchronize on waitObjB 

to ensure it’s not deleted 
prematurely in release()

waitObjA

waitObjB



25

Critical 
Section

T3

FairSemaphore

0

mPermits

mWaitQ

T2

Release 
lock

Block on 
monitor condition

Visual Analysis of Fair Semaphore Acquire (T3)

Must synchronize on the 
intrinsic (monitor) lock to 
update wait queue safely

waitObjA

waitObjB



26

Critical 
Section

FairSemaphore

mWaitQ

0

mPermits
waitObjA waitObjB

Visual Analysis of Fair Semaphore Acquire (T3)

Add new waitObjB to end of 
wait queue, i.e., in FIFO order

T3



27

Critical 
Section

FairSemaphore

0

mPermits

T3

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

Release intrinsic (monitor) 
lock & leave the monitor 
object’s critical section



28

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

wait() on waitObjB must be 
made w/ waitObjB synchronized, 
but w/out holding monitor lock 

to avoid “self-deadlock”



29

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Acquire (T3)

waitObjA waitObjB

wait() atomically releases 
the waitObjB monitor lock 
& blocks until it is notified



30

Visual Analysis of
Fair Semaphore Release

(T4)



31

T4

FairSemaphore s = 

new FairSemaphore(1);

...

// Thread T4

s.release();

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Enter monitor 
object

Visual Analysis of Fair Semaphore Release (T4)

waitObjA waitObjB

Thread T4 releases longest 
waiting thread, i.e., thread 

T2 waiting on waitObjA

Thread T4 could be thread T1 or a different thread altogether



32

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Acquire
lock

T4

Visual Analysis of Fair Semaphore Release (T4)

waitObjA waitObjB

Must synchronize on the intrinsic 
(monitor) lock to update permit 

count & wait queue safely



33

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T4

next (waitObjA)

Visual Analysis of Fair Semaphore Release (T4)

waitObjB

If next waiter (waitObjA) is in the 
wait queue then another thread 
is waiting to acquire semaphore, 
so don’t increment permit count



34

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

Acquire 
Lock

T4

Visual Analysis of Fair Semaphore Release (T4)

Must acquire the monitor 
lock on the next waitObjA

waitObjB
next 

(waitObjA)



35

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T4

Unblock T2 on 
monitor condition

Visual Analysis of Fair Semaphore Release (T4)

Inform thread T2 blocked on 
next waitObjA in acquire() 
that a permit is available

waitObjB
next 

(waitObjA)



36

Critical 
Section

FairSemaphore

0

mPermits

mWaitQ

T4 Release 
& leave

Waiting 
on lock

Visual Analysis of Fair Semaphore Release (T4)

Unlock the next monitor 
object so thread T2 waiting 
in acquire() can continue

waitObjB
next 

(waitObjA)



37

Critical 
Section

FairSemaphore

0

mPermits

T4

Waiting 
on lock

mWaitQ

Visual Analysis of Fair Semaphore Release (T4)

Release intrinsic (monitor) 
lock & leave the monitor 
object’s critical section

waitObjB
next 

(waitObjA)



38

Critical 
Section

FairSemaphore

1

mPermits

mWaitQ

Visual Analysis of Fair Semaphore Release (T4)

If no other threads are waiting 
then thread T4 increments the 
permit count by 1 so another 

thread can acquire the semaphore



39

End of Visualizing a Fair 
Semaphore Via the Specific 

Notification Pattern


