
Java Concurrent Collections:

ConcurrentHashMap & BlockingQueue

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the capabilities of Java’s

concurrent collections

• Recognize the capabilities of Java’s
ConcurrentHashMap & BlockingQueue

3

Overview of Java
ConcurrentHashMap

4

Overview of Java ConcurrentHashMap
• Provides efficient concurrent operations

on key/value pairs via OO & functional
programming APIs

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

5

Overview of Java ConcurrentHashMap
• Provides efficient concurrent operations

on key/value pairs via OO & functional
programming APIs

• A highly-optimized “associative array”

• Cannot contain duplicate keys

• i.e., each key maps to at most
one value

See en.wikipedia.org/wiki/Associative_array

https://en.wikipedia.org/wiki/Associative_array

6

Overview of Java ConcurrentHashMap
• Implemented as a hash table

See en.wikipedia.org/wiki/Hash_table

https://en.wikipedia.org/wiki/Hash_table

7

Overview of Java ConcurrentHashMap
• Implemented as a hash table

• Insert & retrieve data elements by key

Map<String, Integer> map

= new ConcurrentHashMap<>();

initializeMap(map);

// Thread T1

map.put("key1", 42);

// Thread T2

Integer value = map.get("key1");

K & V K & V K & V

K & V K & V K & V K & V

ConcurrentHashMap

K & V

Array Linked lists/trees

8

Overview of Java ConcurrentHashMap
• Implemented as a hash table

• Insert & retrieve data elements by key

put() in thread T1 must “happen-
before” get() in thread T2

See lesson on “Java Happens-Before Relationships”

K & V K & V K & V

K & V K & V K & V K & V

ConcurrentHashMap

Map<String, Integer> map

= new ConcurrentHashMap<>();

initializeMap(map);

// Thread T1

map.put("key1", 42);

// Thread T2

Integer value = map.get("key1");

K & V

Array Linked lists/trees

9

Overview of Java ConcurrentHashMap
• Implemented as a hash table

• Insert & retrieve data elements by key

• Two items that hash to same location
in the array are placed in linked list

map.put("key2", 1066);

K & V K & V K & V

K & V K & V K & V K & V

ConcurrentHashMap

K & V K & V

Array Linked lists/trees

10

Overview of Java ConcurrentHashMap
• Implemented as a hash table

• Insert & retrieve data elements by key

• Two items that hash to same location
in the array are placed in linked list

• In Java 8+, a linked list is replaced
by a binary tree when # of elements
in a bucket reaches certain threshold

See www.nagarro.com/en/blog/post/24/performance-improvement-for-hashmap-in-java-8

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

http://www.nagarro.com/en/blog/post/24/performance-improvement-for-hashmap-in-java-8

11

• Optimized for multi-core CPUs

Overview of Java ConcurrentHashMap

See www.ibm.com/developerworks/library/j-jtp08223

http://www.ibm.com/developerworks/library/j-jtp08223

12

Overview of Java ConcurrentHashMap

These locks help to
minimize contention

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

13

Overview of Java ConcurrentHashMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

There are common human
known uses of this approach!

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

14

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

15

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

16

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists (or trees)

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

17

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking

Array Linked lists/trees

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

18

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking, e.g.,

• Atomic add to head of list

Array Linked lists/trees

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

19

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking, e.g.,

• Atomic add to head of list

• Remove from list by setting data
field to null, rebuild list to skip this cell

• Unreachable cells are eventually garbage collected

Array Linked lists/trees

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

20

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking

• Can be modified during iteration

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

21

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking

• Can be modified during iteration, e.g.

• Entire map isn’t locked

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

22

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking

• Can be modified during iteration, e.g.

• Entire map isn’t locked

• ConcurrentModificationException isn’t thrown

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

23

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Its methods allow read/write operations
with minimal locking, e.g.

• Reads are concurrent since list cells
are immutable (except for data field)

• Reads & writes are concurrent if they
occur in different lists

• Reads & writes to same list are
optimized to avoid locking

• Can be modified during iteration, e.g.

• Entire map isn’t locked

• ConcurrentModificationException isn’t thrown

• However, changes may not be visible immediately

K & V K & V K & V

ConcurrentHashMap

K & V K & V

K & V

K & V

K & V

K & V

K & V

K & V

Array Linked lists/trees

24

Overview of Java ConcurrentHashMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

This single lock may cause contention

• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Conversely, a SynchronizedMap only
uses a single lock

Array Linked lists

K & V K & V K & V

SynchronizedMap

K & V K & V

K & V K & V K & V K & V

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

25

Overview of Java ConcurrentHashMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

There are also common human
known uses of this approach!

• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Conversely, a SynchronizedMap only
uses a single lock

Array Linked lists

K & V K & V K & V

SynchronizedMap

K & V K & V

K & V K & V K & V K & V

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

26

Overview of Java ConcurrentHashMap
• Optimized for multi-core CPUs

• It uses a group of locks, each guarding
separate entries in the hash table

• Conversely, a SynchronizedMap only
uses a single lock

• ConcurrentHashMaps are thus much
more scalable than SynchronizedMaps

public void main(String[] argv){

...

runTest(maxIterations,

new ConcurrentHashMap());

runTest(maxIterations,

Collections.synchronizedMap(new HashMap<>));

...

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex9

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex9

27

Overview of Java ConcurrentHashMap

See dig.cs.illinois.edu/papers/checkThenAct.pdf

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

Only one computation per key is
performed even if multiple threads call
computeIfAbsent() using the same key

• Provides “atomic get-and-maybe-set”
methods

http://dig.cs.illinois.edu/papers/checkThenAct.pdf

28

• Provides “atomic get-and-maybe-set”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#computeIfAbsent

Overview of Java ConcurrentHashMap
Use

return map.computeIfAbsent

(key,

k -> mappingFunc(k)));

instead of

V value = map.get(key);

if (value == null) {

value =

mappingFunc.apply(key);

if (value != null)

map.put(key, value);

}

return value;

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-

29

• Provides “atomic get-and-maybe-set”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#putIfAbsent

Overview of Java ConcurrentHashMap
Use

return map.putIfAbsent

(key, value);

instead of

V value = map.get(key);

if (value == null)

return map.put(key, value);

else

return value;

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#putIfAbsent-K-V-

30

• Provides “atomic get-and-maybe-set”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

• Replaces entry for a key only if
currently mapped to some value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

Overview of Java ConcurrentHashMap
Use

return map.replace(key, value);

instead of

if (map.containsKey(key))

return map.put(key, value);

else

return null;

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-

31

• Provides “atomic get-and-maybe-set”
methods, e.g.

• If key isn’t already associated w/a
value, compute its value using the
given function & enter it into map

• If a key isn’t already associated w/a
value, associate it with the value

• Replaces entry for a key only if
currently mapped to some value

• Replaces entry for a key only
if currently mapped to given value

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/ConcurrentHashMap.html#replace

Overview of Java ConcurrentHashMap
Use

return map.replace(key,

oldValue,

newValue);

instead of

if (map.containsKey(key) &&

Objects.equals(map.get(key),

oldValue)) {

map.put(key, newValue);

return true;

} else

return false;

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#replace-K-V-V-

32

Overview of Java
BlockingQueue

33

Overview of Java BlockingQueue
• A Queue supporting operations with certain properties

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

34

Overview of Java BlockingQueue
• A Queue supporting operations with certain properties
• wait for the queue to become non-empty when retrieving an element &

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

35

Overview of Java BlockingQueue
• A Queue supporting operations with certain properties
• wait for the queue to become non-empty when retrieving an element &
• wait for space to become available in queue when storing an element

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

36

Overview of Java BlockingQueue
• When adding to a full queue or retrieving from an empty queue clients can

either block indefinitely, timeout after waiting for a designated time, or poll

put() take()

37

Overview of Java BlockingQueue
• Many BlockingQueue implementations use

Java ReentrantLock & ConditionObjects

usesuses
2

ArrayBlocking

Queue

put()
take()

Lock

lock()
unlock()

uses

take() put()

Consumer Producer

ConditionVariable

await()
signal()
signalAll()

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject” for examples

38

End of Java Concurrent
Collections: ConcurrentHash

Map & BlockingQueue

