
Introduction to Safe 
Publication in Java

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand what “safe publication” 

means in the context of Java objects
running in concurrent programs



3

Overview of Safe 
Publication in Java



4

• A Java object that’s shared across 
threads must meet several criteria

Overview of Safe Publication in Java

Semaphore3

See flylib.com/books/en/2.558.1/safe_publication.html

https://flylib.com/books/en/2.558.1/safe_publication.html


5

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction


6

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly

• If the this reference “escapes” 
during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 
public ThisEscape
(EventSource source) { 
source
.registerListener
(new EventListener() { 

public void 
onEvent(Event event){ 
doSomething(event); 

} 
}); 

} 
} 

https://vlkan.com/blog/post/2014/02/14/java-safe-publication


7

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly

• If the this reference “escapes” 
during construction the object 
is not properly constructed

Overview of Safe Publication in Java

See vlkan.com/blog/post/2014/02/14/java-safe-publication

public class ThisEscape { 
public ThisEscape
(EventSource source) { 
source
.registerListener
(new EventListener() { 

public void 
onEvent(Event event){ 
doSomething(event); 

} 
}); 

} 
} 

Implicitly publishes the enclosing 
ThisEscape object because inner 

class instances contain a hidden 
reference to the enclosing object

https://vlkan.com/blog/post/2014/02/14/java-safe-publication


8

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly
• They must be “published safely”

Overview of Safe Publication in Java

See shipilev.net/blog/2014/safe-public-construction

https://shipilev.net/blog/2014/safe-public-construction


9

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly
• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

Overview of Safe Publication in Java

This “object-level” property can be viewed as a generalization of 
“operation-level” atomic operations discussed in earlier lessons



10

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly
• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {
public ArrayList<String>
mList;

public void initialize() { 
mList = new ArrayList<>(
Array.asList(...);

}
}

// Thread T1
A a = new A();
a.initialize();

// Thread T2
doSomething(a.mList);

This problem only arises in multi-threaded programs on multi-core CPUs



11

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly
• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {
public ArrayList<String>
mList;

public void initialize() { 
mList = new ArrayList<>(
Array.asList(...);

}
}

// Thread T1
A a = new A();
a.initialize();

// Thread T2
doSomething(a.mList);

Initialize a field in thread T1



12

• A Java object that’s shared across 
threads must meet several criteria
• They must be constructed properly
• They must be “published safely”

• Safe publication ensures all values 
written within a thread before the 
publication are visible to all reader 
threads that observe the published 
object

• Storing a object reference into 
a public field is insufficient to 
publish that object safely

Overview of Safe Publication in Java
class A {
public ArrayList<String>
mList;

public void initialize() { 
mList = new ArrayList<>(
Array.asList(...);

}
}

// Thread T1
A a = new A();
a.initialize();

// Thread T2
doSomething(a.mList);

mList is not guaranteed to be initialized when thread T2 gets a reference to object a



13

End of Introduction to Safe 
Publication in Java


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of Safe �Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	Overview of Safe Publication in Java
	End of Introduction to Safe Publication in Java

