Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class=>
(& Thread

. - & 'yield()-void
Recognize how Java Thread methods & currontThread()-Thread

support “happens-before” relationships &sleep(long):void

& sleep(long,int)-void
Thread A . & Thread()

& Thread(Runnable)
Thread B @ Thread(String)

@ start()-void

» @ run()void

Everything = exit():void

before the i @ interrupt():void
uniock on M... & interrupted()-boolean
@ isInterrupted():boolean

- VISINS 10 m o isAlive()-boolean
;;/tz:yttrl;\éng - ; - & setPriority(int)-void
lock on M unlock M o getPriority()int

. & join(long)-void
j=y @ join(long.int)-void
¥ join{)-void

& setDaemon(boolean)void
& isDaemon():boolean

Learning Objectives in this Part of the Lesson

« Know how Java collections support
“happens-before” relationships

-

N Y M M)
=

™\

;‘ ;1 ;‘ Bin
— — - Locks —
0 1 2 m
Hash Hash }ash Hash

Bin Bin Bin Bin
\

J

ConcurrentHashMap

Java Thread "Happens-
Before” Relationships

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships ® Thread

& yield()void

Thread A) & currentThread()- Thread
& sleep(long)void

3 Thread B & sleep(long.int)-void

@ Thread|)

, @ Thread(Runnable)
Everything & Thread(String)

before the o
unlock on M l @ start()void

unlock M > lock M @ run()void

l _visible to | gxit[}:vuid |
everything m @ interrupt()-void
afterthe § & interrupted():boolean

lockon M uniock M @ isInterrupted()-boolean
Y & isAlive()-boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join(long.int)void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

y

=2l

=

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships © Thread
. : w) " & yield()void

Starting a thread hap_pens before” the run() hook & cumentThroad) Thread
method of the thread is called & sleep(long)-void
& sleep(long.int)-void
Thread A Thread B & Thread()
........... & Thread(Runnable)
Thread threadB = new Thread(..); public void run(){ @ Thread(String)
0OCCO0ZCO0oC f}fﬂ______..—gtatement 1; @ S’[EI'H:}I".-'EIin
threadB.start(); -— @ run()-void
...........) = exit()void
threadB.start() @ interrupt()-void

happened before all & interrupted()-boolean

@ isInterrupted()-boolean

& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join(long.int)void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

statements in run

See www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.htmi

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called

Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

\ Create & start threadB

from within threadA

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called

Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ; \\\\\

This lambda expression plays the
role of the run() hook method!

<< Java Class>=

(9 Thread

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-

before” relationships

« Starting a thread “happens-before” the run() hook

method of the thread is called

Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

\

<< Java Class>=

(9 Thread

threadA’s call to the threadB.start() method (&
associated changes it made to any shared state) will
“happen before” threadB’s run() hook method is called

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

10

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

\

<< Java Class>=

(9 Thread

Likewise, the state of threadB will be consistent &
visible before the run() hook method begins to execute

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

11

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>

before” relationships ® Thread

& yield()void
& currentThread()- Thread
& sleep(long)void

« The termination of a thread “happens-before” a zjifrzzg?}ngint}:wid

jOin() with the terminated thread & Thread(Runnable)

@ Thread(String)
Thread A Thread B @ start()void

@ run()-void

Thread threadB = new Thread(..); public void run{ }{ = exit():void

SLlEE DL @ interrupt()-void

& interrupted():boolean

threadB.join(); P @ isInterrupted():boolean

statement 1, — & isAlive()-boolean

finishing of run P - & setPriority(int)-void
method of B & getPriority():int

happened before join(long)-void
Ul & join(long.int)void

& join()-void

& setDaemon(boolean):void

& isDaemon()-boolean

threadB.start();

12

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships ® Thread

& yield()void
& currentThread()- Thread
& sleep(long)void

« The termination of a thread “happens-before” a ?;'T'Lerizg?}ng-im}:mid
jOin() with the terminated thread & Thread(Runnable)
@ Thread(String)

Thread threadB =

new Thread(() -> ziﬁaiﬁf
System.out.println = exit()void
("hello world")); @ interrupt()-void
threadB.start () ; & interrupted()-boolean

@ isInterrupted()-boolean

& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
threadB. join() ; join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

13

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships ® Thread

& yield()void
& currentThread()- Thread
& sleep(long)void

- - \\ " 2 int)-voi
« The termination of a thread “happens-before” a ELEF‘ZEEE'}”Q-'””-””'E'
jOin() with the terminated thread &Thread[ﬂumable}
Thread threadB = &ﬂmmﬂ&mm}
@ start()void
new Thread(() -> o I i

("hello World")), @ interrupt()-void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int

threadB.start() ;

;(iﬂ

threadB. join() ; join(long)-void
& join{long.int)-void
threadB terminates after its lambda & join() void

& setDaemon(boolean):void
& isDaemon()-boolean

expression run() processing completes

14

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships ® Thread

& yield()void
& currentThread()- Thread
& sleep(long)void

- - \\ " 2 int)-voi
« The termination of a thread “happens-before” a ELEF‘ZEEE'}”Q-'””-””'E'
jOin() with the terminated thread & Thread(Runnable)
Thread threadB = &ﬂmmﬂﬁmm}
@ start()void
new Thread(() -> o I i

("hello world"))
threadB.start() ;

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int

threadB. join() ; join(long)-void
& join{long.int)-void
\ & join()-void
. . {}FsetDaemnn[buulean}:uuid
threadA waiting on join() only resumes & isDaemon()-boolean

its processing after threadB terminates

15

Java Thread “"Happens-Before” Relationships

» Methods in the Java Thread class establish “happen-
before” relationships

« The termination of a thread “happens-before” a
join() with the terminated thread

Thread threadB =
new Thread(() ->
System.out.println
("hello world"));
threadB.start() ;

threadB. join() ;

\

<< Java Class>=

(9 Thread

After join() returns threadA must see all changes made to
_| shared state by threadB that “happened before” it exited

& yield()void

& currentThread()- Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

& Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted()-boolean
& isAlive()-boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

16

Java Collections "Happens-
Before” Relationships

17

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships <interfacess

Queue<E>

' 1 I <<interface>>
. .
I
I

I
I
[PriorityQueue<E> /\
I

ConcurrentLinkedQueue<E>

LinkedList<E>

I
;= | HashMap<K,v> q.l SynchronousQueue<E> i
I
|
<<interfaces>> | LinkedHashMap<K,V> ArrayBlockingQueue<E> f§ — 1
Map<K,V> 4' ______ I :
A I_ WeakHashMap<K,V> LinkedBlockingQueue<E> - —,

|
:_ J 1dentityHashMap<K,v> PriorityBlockingQueue<E>
I
I

DelayQueue<E>fll — = — — —

= | EnumMap<K,v>

- Hashtable<K,v>

<<interfaces>
ConcurrentMap<K,V> I

ConcurrentHashMap<K,V>

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html#MemoryVisibility

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Thread A Thread B

synchronized (lock) {

__ synchronized (lock) {

release lock by
A happened
before B got it

release lock by

B happened
before A got it

\

e.g., a ReentrantLock or exiting a
synchronized method/statement

See www.logicbig.com/tutorials/core-java-tutorial/
java-multi-threading/happens-before.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B

class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
oo { ... R

public void put(E e) ... { public E take() ... {
.. final ReentrantlLock lock
final Reentrantlock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly() ; try {
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}

20

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B
class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
R R
public void put(E e) ... { public E take() ... {
.. final /ReentrantLock lock
final ReentrantlLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly() ; try { .
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}
}

Consider the put() & take() methods in ArrayBlockingQueue

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject’

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B

class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
oo { ... R

public void put(E e) ... { public E take() ... {
.. final ReentrantlLock lock
final Reentrantlock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly() ; try {
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

} \
}

Actions prior to "releasing” the ReentrantLock must happen-
before actions subsequent to a successful 'acquiring” of this lock

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject’

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value = concurrentMap.get("key") ;

See upcoming lesson on “Java Concurrent Collections™

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value = concurrentMap.get("key") ;

Consider a ConcurrentHashMap that supports concurrent
retrievals & high expected concurrency for updates

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Java Collections “"Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value =|concurrentMap.get ("key") ;

pd

Placing a “key/value” element into a ConcurrentHashMap must
happen-before accessing or removing this element from the map

25

Java Collections “Happens-Before” Relationships

« Java’s class libraries are responsible |
for ensuring these “happens-before”
relationships are preserved

Concurrency
; lang and util Collections Utilities

26

Java Collections “Happens-Before” Relationships

» Java’s class libraries are responsible Java Language

for ensuring these “happens-before”| '™ '™ fmabe @t jar - jaa .

. . Security Int’l RMI IDL Deploy Monitoring Troubleshoot Scripting JVMTI
relationships are preserved

JPDA JConsole

lang and util Collections Co'::ill'i:i'::cy JAR Logging Management

E— Preferences Ref - Regular e . -
' Objects Reflection Expressions Versioning Zip Instrumentation

N | L L R

You don’t need to understand all the nitty-gritty details of Java’s memory
model — you just need to understand how to use synchronizers properly!

End of Examples of "Happens-
Before” Relationships

28

