Evaluating the Pros & Cons
of TimedNMemoizer
Douglas C. Schmidt

d.schmidt@uanderhilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderhilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Evaluate the pros & cons of the
TimedMemoizer class




Evaluating the
TimedMemoizer Class




Evaluating the TimedMemoizer Class

<<Java Class>>

« If a TimedMemoizer is used over time the
(® TimedMemoizer<K,V>

ScheduledExecutorService will clean it up FonFunction Fanction<k V.

o mTimeoutinMillisecs: long

periodically _ _
a mScheduledExecutorService: ScheduledExecutorService
@ TimedMemoizer(Function<K,V> long)

© apply(K)
@ shutdown():void

-mNonAccessedValue \ 0..1

<<Java Class>>
(9 RefCountedValue

4" mRefCount: AtomicLong
4'mValue: V

-mCache
P

a RefCountedValue(V,long) | 0.
@ equals(Object):boolean
& get()

& schedule(K):void

This cleanup keeps memory usage from expanding indefinitely




Evaluating the TimedMemoizer Class

« However, there is a limitation

fStarting primality computations
60137601 i not prime with smallest factor 67
181858000 is nt prime with smallest factor 2

127457798 is not prime with smallest factor 2
503325860

716682593 Is not prime with smallest factor 11
509252196 is net prime with smallest factor 2
755195772 is not prime with smallest factor 2
1520523007 15 not prime with smallest factor 37
587637322 is not prime with smallest factor 2




Evaluating the TimedMemoizer Class
« However, there is a limitation

« TimedMemoizer creates a
runnable for each key it
passes to the Scheduled
ExecutorService, which
does not scale well

-~

OVERWHELMED?

We'll fix this problem in the upcoming lesson on “ Implementing TimedMemoizerEX'




End of Evaluating the Pros
& Cons of TimedMemoizer




