
Applying the Java ScheduledExecutor

Service to TimedMemoizer

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Learn how to create a TimedMemoizer

that applies ScheduledExecutorService
to remove stale entries

3

Applying ScheduledExecutor
Service to TimedMemoizer

4

• TimedMemoizer maps a key to the value
produced by a function, but limits the
time a key/value pair remains cached

See PrimeScheduledExecutorService/app/src/main/java/vandy/mooc/prime/utils/TimedMemoizer.java

Applying ScheduledExecutorService to TimedMemoizer

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeScheduledExecutorService/app/src/main/java/vandy/mooc/prime/utils/TimedMemoizer.java

5

• TimedMemoizer maps a key to the value
produced by a function, but limits the
time a key/value pair remains cached

• If a value has been computed for a
key it is returned rather than calling
the function to compute it again

Applying ScheduledExecutorService to TimedMemoizer

6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Applying ScheduledExecutorService to TimedMemoizer
• TimedMemoizer uses ConcurrentHashMap

to minimize synchronization overhead

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

7

• TimedMemoizer uses ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

Applying ScheduledExecutorService to TimedMemoizer

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Bin
Locks

ConcurrentHashMap

See www.ibm.com/developerworks/java/library/j-jtp08223

Contention is low due to use of multiple locks

http://www.ibm.com/developerworks/java/library/j-jtp08223

8

• TimedMemoizer uses ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• A SynchronizedMap just uses one lock

Applying ScheduledExecutorService to TimedMemoizer

SynchronizedMap

…
0 1 2 3 n

key-value

4

key-value

key-value

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Contention is higher due to use of one lock

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

9See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent

Applying ScheduledExecutorService to TimedMemoizer

Timed

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

• TimedMemoizer uses ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• computeIfAbsent() ensures only one
call to function runs when a key &
value are first added to the cache

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-

10

Applying ScheduledExecutorService to TimedMemoizer

Only one computation per key is
performed even if multiple threads call
computeIfAbsent() using the same key

Eliminates FutureTask (ashkrit.blogspot.com/2014/12/what-is-new-in-java8-concurrenthashmap.html)

Timed

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

• TimedMemoizer uses ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• computeIfAbsent() ensures only one
call to function runs when a key &
value are first added to the cache

http://ashkrit.blogspot.com/2014/12/what-is-new-in-java8-concurrenthashmap.html

11

Applying ScheduledExecutorService to TimedMemoizer
• If a key isn’t accessed within a given period

TimedMemoizer purges it from the map

12

• If a key isn’t accessed within a given period
TimedMemoizer purges it from the map

• RefCountedValue tracks # of times a key
is referenced within a given # of millisecs

Applying ScheduledExecutorService to TimedMemoizer

13

• If a key isn’t accessed within a given period
TimedMemoizer purges it from the map

• RefCountedValue tracks # of times a key
is referenced within a given # of millisecs

• Timeout logic is performed by scheduling
a new “removeIfStale” runnable via the
Java ScheduledExecutorService

Applying ScheduledExecutorService to TimedMemoizer

Each runnable is scheduled as a
“one-shot” task that’s rescheduled iff
the value has been accessed during

the mTimeoutInMillisecs period

14

Applying ScheduledExecutorService to TimedMemoizer
• Lots of memory can be consumed w/a large

of map entries since each key will create
a new “removeIfStale” runnable

See upcoming lesson on “Java ScheduledExecutorService: Application to TimedMemoizerEx”

15

End of Applying the Java

ScheduledExecutorService

to TimedMemoizer

