
Applying Java FutureTask

to Design a Memoizer Cache

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how Java FutureTask conveys 
a result from a computation running in a 
thread to thread(s) retrieving the result

• Recognize key methods in Java FutureTask

• Know what a Memoizer is & motivates how

FutureTask can optimize its performance 
in concurrent programs

Learning Objectives in this Part of the Lesson

Memoizer caches function call results & returns cached results for same inputs



3

Motivating FutureTask
with a Memoizer



4

Motivating FutureTask with a Memoizer

See en.wikipedia.org/wiki/Memoization

• Memoization is optimization technique used to speed up programs

https://en.wikipedia.org/wiki/Memoization


5

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Motivating FutureTask with a Memoizer

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}

Memoizer



6

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Motivating FutureTask with a Memoizer

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}

Memoizer



7

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Motivating FutureTask with a Memoizer

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}

Memoizer



8

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

Motivating FutureTask with a Memoizer

V computeIfAbsent(K key, Function func) {

1. If key already exists in cache 

return cached value associated w/key

}

Memoizer



9

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

Motivating FutureTask with a Memoizer

V computeIfAbsent(K key, Function func) {

1. If key already exists in cache 

return cached value associated w/key

}

Memoizer



10See PrimeExecutorServiceFutureTask/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

• Memoizer defines a cache that returns a 
value produced by applying a (long-
running) function to a key

Motivating FutureTask with a Memoizer

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorServiceFutureTask/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java


11

• Memoizer defines a cache that returns a 
value produced by applying a (long-
running) function to a key

This class is based heavily on the book “Java 
Concurrency in Practice” by Brian Goetz et al.

Motivating FutureTask with a Memoizer

See jcip.net

http://jcip.net/


12

• Memoizer defines a cache that returns a 
value produced by applying a (long-
running) function to a key

• A value that’s already been computed 
for a key is just returned, rather than 
applying the function to recompute it

Motivating FutureTask with a Memoizer



13See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

• Memoizer defines a cache that returns a 
value produced by applying a (long-
running) function to a key

• A value that’s already been computed 
for a key is just returned, rather than 
applying the function to recompute it

• By implementing Function a memoizer can
be used whenever a Function is expected

Motivating FutureTask with a Memoizer

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


14

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

See docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html

Motivating FutureTask with a Memoizer

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html


15

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

Motivating FutureTask with a Memoizer

See www.ibm.com/developerworks/java/library/j-jtp08223

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Bin
Locks

ConcurrentHashMap

Contention is low due to use of multiple locks

http://www.ibm.com/developerworks/java/library/j-jtp08223


16

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• A SynchronizedMap just uses one lock

Motivating FutureTask with a Memoizer

SynchronizedMap

…
0 1 2 3 n

key-value

4

key-value

key-value

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Contention is higher due to use of one lock

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap


17

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• computeValue() uses FutureTask to 
ensure a function runs only when key
is first added to cache

Motivating FutureTask with a Memoizer

See docs.oracle.com/javase/7/docs/api/java/util/concurrent/FutureTask.html

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/FutureTask.html


18

Memoizer

computeValue(pC1)

computeValue(pC1)

computeValue(pC1)

computeValue(pC1)

Only one computation occurs if multiple threads 
simultaneously call computeValue() for same key

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A different lock guards each hash bin

• computeValue() uses FutureTask to 
ensure a function runs only when key
is first added to cache

Motivating FutureTask with a Memoizer



19

End of Applying Java 
FutureTask to Design 

a Memoizer Cache


